YES We show the termination of the TRS R: if(true(),t,e) -> t if(false(),t,e) -> e member(x,nil()) -> false() member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) eq(nil(),nil()) -> true() eq(O(x),|0|(y)) -> eq(x,y) eq(|0|(x),|1|(y)) -> false() eq(|1|(x),|0|(y)) -> false() eq(|1|(x),|1|(y)) -> eq(x,y) negate(|0|(x)) -> |1|(x) negate(|1|(x)) -> |0|(x) choice(cons(x,xs)) -> x choice(cons(x,xs)) -> choice(xs) guess(nil()) -> nil() guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) verify(nil()) -> true() verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) sat(cnf) -> satck(cnf,guess(cnf)) satck(cnf,assign) -> if(verify(assign),assign,unsat()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: member#(x,cons(y,ys)) -> if#(eq(x,y),true(),member(x,ys)) p2: member#(x,cons(y,ys)) -> eq#(x,y) p3: member#(x,cons(y,ys)) -> member#(x,ys) p4: eq#(O(x),|0|(y)) -> eq#(x,y) p5: eq#(|1|(x),|1|(y)) -> eq#(x,y) p6: choice#(cons(x,xs)) -> choice#(xs) p7: guess#(cons(clause,cnf)) -> choice#(clause) p8: guess#(cons(clause,cnf)) -> guess#(cnf) p9: verify#(cons(l,ls)) -> if#(member(negate(l),ls),false(),verify(ls)) p10: verify#(cons(l,ls)) -> member#(negate(l),ls) p11: verify#(cons(l,ls)) -> negate#(l) p12: verify#(cons(l,ls)) -> verify#(ls) p13: sat#(cnf) -> satck#(cnf,guess(cnf)) p14: sat#(cnf) -> guess#(cnf) p15: satck#(cnf,assign) -> if#(verify(assign),assign,unsat()) p16: satck#(cnf,assign) -> verify#(assign) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The estimated dependency graph contains the following SCCs: {p12} {p3} {p4, p5} {p8} {p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: verify#(cons(l,ls)) -> verify#(ls) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: verify#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: member#(x,cons(y,ys)) -> member#(x,ys) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: member#_A(x1,x2) = ((1,1),(1,1)) x2 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(O(x),|0|(y)) -> eq#(x,y) p2: eq#(|1|(x),|1|(y)) -> eq#(x,y) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: eq#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 O_A(x1) = ((1,1),(1,1)) x1 + (1,1) |0|_A(x1) = ((1,1),(1,1)) x1 + (1,1) |1|_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: guess#(cons(clause,cnf)) -> guess#(cnf) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: guess#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: choice#(cons(x,xs)) -> choice#(xs) and R consists of: r1: if(true(),t,e) -> t r2: if(false(),t,e) -> e r3: member(x,nil()) -> false() r4: member(x,cons(y,ys)) -> if(eq(x,y),true(),member(x,ys)) r5: eq(nil(),nil()) -> true() r6: eq(O(x),|0|(y)) -> eq(x,y) r7: eq(|0|(x),|1|(y)) -> false() r8: eq(|1|(x),|0|(y)) -> false() r9: eq(|1|(x),|1|(y)) -> eq(x,y) r10: negate(|0|(x)) -> |1|(x) r11: negate(|1|(x)) -> |0|(x) r12: choice(cons(x,xs)) -> x r13: choice(cons(x,xs)) -> choice(xs) r14: guess(nil()) -> nil() r15: guess(cons(clause,cnf)) -> cons(choice(clause),guess(cnf)) r16: verify(nil()) -> true() r17: verify(cons(l,ls)) -> if(member(negate(l),ls),false(),verify(ls)) r18: sat(cnf) -> satck(cnf,guess(cnf)) r19: satck(cnf,assign) -> if(verify(assign),assign,unsat()) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: choice#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains.