YES We show the termination of the TRS R: b(f(b(x,z)),y) -> f(f(f(b(z,b(y,z))))) c(f(f(c(x,a(),z))),a(),y) -> b(y,f(b(a(),z))) b(b(c(b(a(),a()),a(),z),f(a())),y) -> z -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: b#(f(b(x,z)),y) -> b#(z,b(y,z)) p2: b#(f(b(x,z)),y) -> b#(y,z) p3: c#(f(f(c(x,a(),z))),a(),y) -> b#(y,f(b(a(),z))) p4: c#(f(f(c(x,a(),z))),a(),y) -> b#(a(),z) and R consists of: r1: b(f(b(x,z)),y) -> f(f(f(b(z,b(y,z))))) r2: c(f(f(c(x,a(),z))),a(),y) -> b(y,f(b(a(),z))) r3: b(b(c(b(a(),a()),a(),z),f(a())),y) -> z The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: b#(f(b(x,z)),y) -> b#(z,b(y,z)) p2: b#(f(b(x,z)),y) -> b#(y,z) and R consists of: r1: b(f(b(x,z)),y) -> f(f(f(b(z,b(y,z))))) r2: c(f(f(c(x,a(),z))),a(),y) -> b(y,f(b(a(),z))) r3: b(b(c(b(a(),a()),a(),z),f(a())),y) -> z The set of usable rules consists of r1, r3 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: b#_A(x1,x2) = ((0,1),(0,0)) x1 + ((0,1),(0,0)) x2 f_A(x1) = ((0,0),(1,0)) x1 + (1,1) b_A(x1,x2) = x1 + ((0,1),(0,0)) x2 + (1,1) c_A(x1,x2,x3) = ((1,1),(1,1)) x3 + (1,0) a_A() = (1,1) The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.