YES We show the termination of the TRS R: c(c(c(a(x,y)))) -> b(c(c(c(c(y)))),x) c(c(b(c(y),|0|()))) -> a(|0|(),c(c(a(y,|0|())))) c(c(a(a(y,|0|()),x))) -> c(y) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(c(a(x,y)))) -> c#(c(c(c(y)))) p2: c#(c(c(a(x,y)))) -> c#(c(c(y))) p3: c#(c(c(a(x,y)))) -> c#(c(y)) p4: c#(c(c(a(x,y)))) -> c#(y) p5: c#(c(b(c(y),|0|()))) -> c#(c(a(y,|0|()))) p6: c#(c(b(c(y),|0|()))) -> c#(a(y,|0|())) p7: c#(c(a(a(y,|0|()),x))) -> c#(y) and R consists of: r1: c(c(c(a(x,y)))) -> b(c(c(c(c(y)))),x) r2: c(c(b(c(y),|0|()))) -> a(|0|(),c(c(a(y,|0|())))) r3: c(c(a(a(y,|0|()),x))) -> c(y) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(c(c(a(x,y)))) -> c#(c(c(c(y)))) p2: c#(c(a(a(y,|0|()),x))) -> c#(y) p3: c#(c(b(c(y),|0|()))) -> c#(c(a(y,|0|()))) p4: c#(c(c(a(x,y)))) -> c#(y) p5: c#(c(c(a(x,y)))) -> c#(c(y)) p6: c#(c(c(a(x,y)))) -> c#(c(c(y))) and R consists of: r1: c(c(c(a(x,y)))) -> b(c(c(c(c(y)))),x) r2: c(c(b(c(y),|0|()))) -> a(|0|(),c(c(a(y,|0|())))) r3: c(c(a(a(y,|0|()),x))) -> c(y) The set of usable rules consists of r1, r2, r3 Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: c#_A(x1) = ((1,0),(1,1)) x1 c_A(x1) = ((1,1),(1,0)) x1 + (1,1) a_A(x1,x2) = x1 + ((1,1),(1,0)) x2 + (1,6) |0|_A() = (1,1) b_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (10,5) The next rules are strictly ordered: p1, p2, p3, p4, p5, p6 r2, r3 We remove them from the problem. Then no dependency pair remains.