YES We show the termination of the TRS R: rev(nil()) -> nil() rev(rev(x)) -> x rev(++(x,y)) -> ++(rev(y),rev(x)) ++(nil(),y) -> y ++(x,nil()) -> x ++(.(x,y),z) -> .(x,++(y,z)) ++(x,++(y,z)) -> ++(++(x,y),z) make(x) -> .(x,nil()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev#(++(x,y)) -> ++#(rev(y),rev(x)) p2: rev#(++(x,y)) -> rev#(y) p3: rev#(++(x,y)) -> rev#(x) p4: ++#(.(x,y),z) -> ++#(y,z) p5: ++#(x,++(y,z)) -> ++#(++(x,y),z) p6: ++#(x,++(y,z)) -> ++#(x,y) and R consists of: r1: rev(nil()) -> nil() r2: rev(rev(x)) -> x r3: rev(++(x,y)) -> ++(rev(y),rev(x)) r4: ++(nil(),y) -> y r5: ++(x,nil()) -> x r6: ++(.(x,y),z) -> .(x,++(y,z)) r7: ++(x,++(y,z)) -> ++(++(x,y),z) r8: make(x) -> .(x,nil()) The estimated dependency graph contains the following SCCs: {p2, p3} {p4, p5, p6} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev#(++(x,y)) -> rev#(x) p2: rev#(++(x,y)) -> rev#(y) and R consists of: r1: rev(nil()) -> nil() r2: rev(rev(x)) -> x r3: rev(++(x,y)) -> ++(rev(y),rev(x)) r4: ++(nil(),y) -> y r5: ++(x,nil()) -> x r6: ++(.(x,y),z) -> .(x,++(y,z)) r7: ++(x,++(y,z)) -> ++(++(x,y),z) r8: make(x) -> .(x,nil()) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: rev#_A(x1) = ((1,1),(1,1)) x1 ++_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(.(x,y),z) -> ++#(y,z) p2: ++#(x,++(y,z)) -> ++#(x,y) p3: ++#(x,++(y,z)) -> ++#(++(x,y),z) and R consists of: r1: rev(nil()) -> nil() r2: rev(rev(x)) -> x r3: rev(++(x,y)) -> ++(rev(y),rev(x)) r4: ++(nil(),y) -> y r5: ++(x,nil()) -> x r6: ++(.(x,y),z) -> .(x,++(y,z)) r7: ++(x,++(y,z)) -> ++(++(x,y),z) r8: make(x) -> .(x,nil()) The set of usable rules consists of r4, r5, r6, r7 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: ++#_A(x1,x2) = ((1,1),(1,1)) x2 ._A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,0)) x2 + (1,1) ++_A(x1,x2) = x1 + ((1,1),(1,1)) x2 + (1,1) nil_A() = (1,1) The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ++#(.(x,y),z) -> ++#(y,z) and R consists of: r1: rev(nil()) -> nil() r2: rev(rev(x)) -> x r3: rev(++(x,y)) -> ++(rev(y),rev(x)) r4: ++(nil(),y) -> y r5: ++(x,nil()) -> x r6: ++(.(x,y),z) -> .(x,++(y,z)) r7: ++(x,++(y,z)) -> ++(++(x,y),z) r8: make(x) -> .(x,nil()) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ++#(.(x,y),z) -> ++#(y,z) and R consists of: r1: rev(nil()) -> nil() r2: rev(rev(x)) -> x r3: rev(++(x,y)) -> ++(rev(y),rev(x)) r4: ++(nil(),y) -> y r5: ++(x,nil()) -> x r6: ++(.(x,y),z) -> .(x,++(y,z)) r7: ++(x,++(y,z)) -> ++(++(x,y),z) r8: make(x) -> .(x,nil()) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: ++#_A(x1,x2) = ((1,1),(1,1)) x1 ._A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.