YES We show the termination of the TRS R: eq(|0|(),|0|()) -> true() eq(|0|(),s(X)) -> false() eq(s(X),|0|()) -> false() eq(s(X),s(Y)) -> eq(X,Y) rm(N,nil()) -> nil() rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) ifrm(true(),N,add(M,X)) -> rm(N,X) ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) purge(nil()) -> nil() purge(add(N,X)) -> add(N,purge(rm(N,X))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) p3: rm#(N,add(M,X)) -> eq#(N,M) p4: ifrm#(true(),N,add(M,X)) -> rm#(N,X) p5: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p6: purge#(add(N,X)) -> purge#(rm(N,X)) p7: purge#(add(N,X)) -> rm#(N,X) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The estimated dependency graph contains the following SCCs: {p6} {p2, p4, p5} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: purge#(add(N,X)) -> purge#(rm(N,X)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: purge#_A(x1) = ((1,1),(1,0)) x1 add_A(x1,x2) = x1 + ((1,1),(1,0)) x2 + (1,1) rm_A(x1,x2) = ((1,1),(1,0)) x2 eq_A(x1,x2) = ((0,1),(0,0)) x1 + x2 |0|_A() = (0,0) true_A() = (0,0) s_A(x1) = ((1,1),(0,1)) x1 false_A() = (0,0) ifrm_A(x1,x2,x3) = ((1,1),(1,0)) x3 nil_A() = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) p3: ifrm#(true(),N,add(M,X)) -> rm#(N,X) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: ifrm#_A(x1,x2,x3) = ((0,1),(0,0)) x1 + ((0,0),(1,0)) x2 + ((1,0),(1,0)) x3 false_A() = (1,1) add_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) rm#_A(x1,x2) = ((0,0),(1,0)) x1 + ((0,1),(1,0)) x2 + (2,0) eq_A(x1,x2) = (1,2) true_A() = (1,2) |0|_A() = (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X) p2: rm#(N,add(M,X)) -> ifrm#(eq(N,M),N,add(M,X)) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of r1, r2, r3, r4 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: ifrm#_A(x1,x2,x3) = ((0,1),(0,1)) x1 + x3 false_A() = (1,1) add_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,1) rm#_A(x1,x2) = ((1,1),(1,1)) x2 + (2,0) eq_A(x1,x2) = ((0,1),(0,0)) x1 + x2 + (1,1) |0|_A() = (1,1) true_A() = (0,0) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ifrm#(false(),N,add(M,X)) -> rm#(N,X) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(s(X),s(Y)) -> eq#(X,Y) and R consists of: r1: eq(|0|(),|0|()) -> true() r2: eq(|0|(),s(X)) -> false() r3: eq(s(X),|0|()) -> false() r4: eq(s(X),s(Y)) -> eq(X,Y) r5: rm(N,nil()) -> nil() r6: rm(N,add(M,X)) -> ifrm(eq(N,M),N,add(M,X)) r7: ifrm(true(),N,add(M,X)) -> rm(N,X) r8: ifrm(false(),N,add(M,X)) -> add(M,rm(N,X)) r9: purge(nil()) -> nil() r10: purge(add(N,X)) -> add(N,purge(rm(N,X))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: eq#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.