YES We show the termination of the TRS R: min(x,|0|()) -> |0|() min(|0|(),y) -> |0|() min(s(x),s(y)) -> s(min(x,y)) max(x,|0|()) -> x max(|0|(),y) -> y max(s(x),s(y)) -> s(max(x,y)) -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) gcd(s(x),|0|()) -> s(x) gcd(|0|(),s(x)) -> s(x) gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: min#(s(x),s(y)) -> min#(x,y) p2: max#(s(x),s(y)) -> max#(x,y) p3: -#(s(x),s(y)) -> -#(x,y) p4: gcd#(s(x),s(y)) -> gcd#(-(max(x,y),min(x,y)),s(min(x,y))) p5: gcd#(s(x),s(y)) -> -#(max(x,y),min(x,y)) p6: gcd#(s(x),s(y)) -> max#(x,y) p7: gcd#(s(x),s(y)) -> min#(x,y) and R consists of: r1: min(x,|0|()) -> |0|() r2: min(|0|(),y) -> |0|() r3: min(s(x),s(y)) -> s(min(x,y)) r4: max(x,|0|()) -> x r5: max(|0|(),y) -> y r6: max(s(x),s(y)) -> s(max(x,y)) r7: -(x,|0|()) -> x r8: -(s(x),s(y)) -> -(x,y) r9: gcd(s(x),|0|()) -> s(x) r10: gcd(|0|(),s(x)) -> s(x) r11: gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) The estimated dependency graph contains the following SCCs: {p4} {p1} {p2} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: gcd#(s(x),s(y)) -> gcd#(-(max(x,y),min(x,y)),s(min(x,y))) and R consists of: r1: min(x,|0|()) -> |0|() r2: min(|0|(),y) -> |0|() r3: min(s(x),s(y)) -> s(min(x,y)) r4: max(x,|0|()) -> x r5: max(|0|(),y) -> y r6: max(s(x),s(y)) -> s(max(x,y)) r7: -(x,|0|()) -> x r8: -(s(x),s(y)) -> -(x,y) r9: gcd(s(x),|0|()) -> s(x) r10: gcd(|0|(),s(x)) -> s(x) r11: gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: gcd#_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,0),(1,0)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (0,1) -_A(x1,x2) = x1 max_A(x1,x2) = x1 + x2 min_A(x1,x2) = x1 |0|_A() = (0,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: min#(s(x),s(y)) -> min#(x,y) and R consists of: r1: min(x,|0|()) -> |0|() r2: min(|0|(),y) -> |0|() r3: min(s(x),s(y)) -> s(min(x,y)) r4: max(x,|0|()) -> x r5: max(|0|(),y) -> y r6: max(s(x),s(y)) -> s(max(x,y)) r7: -(x,|0|()) -> x r8: -(s(x),s(y)) -> -(x,y) r9: gcd(s(x),|0|()) -> s(x) r10: gcd(|0|(),s(x)) -> s(x) r11: gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: min#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: max#(s(x),s(y)) -> max#(x,y) and R consists of: r1: min(x,|0|()) -> |0|() r2: min(|0|(),y) -> |0|() r3: min(s(x),s(y)) -> s(min(x,y)) r4: max(x,|0|()) -> x r5: max(|0|(),y) -> y r6: max(s(x),s(y)) -> s(max(x,y)) r7: -(x,|0|()) -> x r8: -(s(x),s(y)) -> -(x,y) r9: gcd(s(x),|0|()) -> s(x) r10: gcd(|0|(),s(x)) -> s(x) r11: gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: max#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: min(x,|0|()) -> |0|() r2: min(|0|(),y) -> |0|() r3: min(s(x),s(y)) -> s(min(x,y)) r4: max(x,|0|()) -> x r5: max(|0|(),y) -> y r6: max(s(x),s(y)) -> s(max(x,y)) r7: -(x,|0|()) -> x r8: -(s(x),s(y)) -> -(x,y) r9: gcd(s(x),|0|()) -> s(x) r10: gcd(|0|(),s(x)) -> s(x) r11: gcd(s(x),s(y)) -> gcd(-(max(x,y),min(x,y)),s(min(x,y))) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: -#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.