YES We show the termination of the TRS R: +(x,|0|()) -> x +(|0|(),x) -> x +(s(x),s(y)) -> s(s(+(x,y))) *(x,|0|()) -> |0|() *(|0|(),x) -> |0|() *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) sum(nil()) -> |0|() sum(cons(x,l)) -> +(x,sum(l)) prod(nil()) -> s(|0|()) prod(cons(x,l)) -> *(x,prod(l)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) p2: *#(s(x),s(y)) -> +#(*(x,y),+(x,y)) p3: *#(s(x),s(y)) -> *#(x,y) p4: *#(s(x),s(y)) -> +#(x,y) p5: sum#(cons(x,l)) -> +#(x,sum(l)) p6: sum#(cons(x,l)) -> sum#(l) p7: prod#(cons(x,l)) -> *#(x,prod(l)) p8: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The estimated dependency graph contains the following SCCs: {p6} {p8} {p3} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(x,l)) -> sum#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: sum#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: prod#(cons(x,l)) -> prod#(l) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the monotone reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: prod#_A(x1) = ((1,1),(1,1)) x1 cons_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2 + (1,0) The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(s(x),s(y)) -> *#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: *#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: +#(s(x),s(y)) -> +#(x,y) and R consists of: r1: +(x,|0|()) -> x r2: +(|0|(),x) -> x r3: +(s(x),s(y)) -> s(s(+(x,y))) r4: *(x,|0|()) -> |0|() r5: *(|0|(),x) -> |0|() r6: *(s(x),s(y)) -> s(+(*(x,y),+(x,y))) r7: sum(nil()) -> |0|() r8: sum(cons(x,l)) -> +(x,sum(l)) r9: prod(nil()) -> s(|0|()) r10: prod(cons(x,l)) -> *(x,prod(l)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: +#_A(x1,x2) = ((1,1),(1,1)) x1 + ((0,1),(0,1)) x2 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.