YES We show the termination of the TRS R: g(A()) -> A() g(B()) -> A() g(B()) -> B() g(C()) -> A() g(C()) -> B() g(C()) -> C() foldB(t,|0|()) -> t foldB(t,s(n)) -> f(foldB(t,n),B()) foldC(t,|0|()) -> t foldC(t,s(n)) -> f(foldC(t,n),C()) f(t,x) -> |f'|(t,g(x)) |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) fold(t,x,|0|()) -> t fold(t,x,s(n)) -> f(fold(t,x,n),x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: foldB#(t,s(n)) -> foldB#(t,n) p3: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p4: foldC#(t,s(n)) -> foldC#(t,n) p5: f#(t,x) -> |f'|#(t,g(x)) p6: f#(t,x) -> g#(x) p7: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) p8: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p9: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p10: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p11: fold#(t,x,s(n)) -> f#(fold(t,x,n),x) p12: fold#(t,x,s(n)) -> fold#(t,x,n) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) r16: fold(t,x,|0|()) -> t r17: fold(t,x,s(n)) -> f(fold(t,x,n),x) The estimated dependency graph contains the following SCCs: {p12} {p1, p2, p3, p4, p5, p7, p8, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: fold#(t,x,s(n)) -> fold#(t,x,n) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) r16: fold(t,x,|0|()) -> t r17: fold(t,x,s(n)) -> f(fold(t,x,n),x) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: fold#_A(x1,x2,x3) = ((1,0),(1,0)) x3 s_A(x1) = ((1,1),(1,1)) x1 + (1,0) The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: foldB#(t,s(n)) -> f#(foldB(t,n),B()) p2: f#(t,x) -> |f'|#(t,g(x)) p3: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p4: foldB#(t,s(n)) -> foldB#(t,n) p5: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p6: |f''|#(triple(a,b,c)) -> foldC#(triple(a,b,|0|()),c) p7: foldC#(t,s(n)) -> foldC#(t,n) p8: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p9: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) r16: fold(t,x,|0|()) -> t r17: fold(t,x,s(n)) -> f(fold(t,x,n),x) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15 Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: foldB#_A(x1,x2) = x1 + x2 + (3,0) s_A(x1) = ((1,0),(1,1)) x1 + (11,1) f#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (6,0) foldB_A(x1,x2) = ((1,0),(1,1)) x1 + ((1,0),(1,1)) x2 + (1,1) B_A() = (4,1) |f'|#_A(x1,x2) = x1 + ((1,1),(0,0)) x2 + (3,0) g_A(x1) = x1 + (1,1) triple_A(x1,x2,x3) = ((1,1),(0,0)) x2 + x3 + (0,1) A_A() = (1,1) |0|_A() = (1,1) |f''|#_A(x1) = x1 + (2,0) foldC#_A(x1,x2) = x1 + x2 foldC_A(x1,x2) = x1 + x2 + (1,0) C_A() = (3,1) |f''|_A(x1) = x1 + (2,1) |f'|_A(x1,x2) = x1 + (11,0) f_A(x1,x2) = x1 + (11,0) The next rules are strictly ordered: p1, p2, p4, p6, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: |f'|#(triple(a,b,c),A()) -> foldB#(triple(s(a),|0|(),c),b) p2: |f'|#(triple(a,b,c),A()) -> |f''|#(foldB(triple(s(a),|0|(),c),b)) p3: foldC#(t,s(n)) -> f#(foldC(t,n),C()) p4: |f'|#(triple(a,b,c),B()) -> f#(triple(a,b,c),A()) and R consists of: r1: g(A()) -> A() r2: g(B()) -> A() r3: g(B()) -> B() r4: g(C()) -> A() r5: g(C()) -> B() r6: g(C()) -> C() r7: foldB(t,|0|()) -> t r8: foldB(t,s(n)) -> f(foldB(t,n),B()) r9: foldC(t,|0|()) -> t r10: foldC(t,s(n)) -> f(foldC(t,n),C()) r11: f(t,x) -> |f'|(t,g(x)) r12: |f'|(triple(a,b,c),C()) -> triple(a,b,s(c)) r13: |f'|(triple(a,b,c),B()) -> f(triple(a,b,c),A()) r14: |f'|(triple(a,b,c),A()) -> |f''|(foldB(triple(s(a),|0|(),c),b)) r15: |f''|(triple(a,b,c)) -> foldC(triple(a,b,|0|()),c) r16: fold(t,x,|0|()) -> t r17: fold(t,x,s(n)) -> f(fold(t,x,n),x) The estimated dependency graph contains the following SCCs: (no SCCs)