YES

We show the termination of the TRS R:

  app(id(),x) -> x
  app(plus(),|0|()) -> id()
  app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y))
p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y)
p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x)

and R consists of:

r1: app(id(),x) -> x
r2: app(plus(),|0|()) -> id()
r3: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))

The estimated dependency graph contains the following SCCs:

  {p2}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y)

and R consists of:

r1: app(id(),x) -> x
r2: app(plus(),|0|()) -> id()
r3: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y))

The set of usable rules consists of

  r2

Take the reduction pair:

  matrix interpretations:
  
    carrier: N^2
    order: standard order
    interpretations:
      app#_A(x1,x2) = ((1,1),(1,1)) x1
      app_A(x1,x2) = ((1,1),(1,1)) x1 + ((1,1),(1,1)) x2
      plus_A() = (0,0)
      s_A() = (1,0)
      |0|_A() = (0,0)
      id_A() = (0,0)

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.