YES We show the termination of the TRS R: f(|0|(),|1|(),x) -> f(s(x),x,x) f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) p2: f#(x,y,s(z)) -> f#(|0|(),|1|(),z) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The set of usable rules consists of (no rules) Take the reduction pair: matrix interpretations: carrier: N^2 order: standard order interpretations: f#_A(x1,x2,x3) = ((0,1),(1,1)) x3 |0|_A() = (1,1) |1|_A() = (1,1) s_A(x1) = ((1,1),(1,1)) x1 + (1,1) The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(|0|(),|1|(),x) -> f#(s(x),x,x) and R consists of: r1: f(|0|(),|1|(),x) -> f(s(x),x,x) r2: f(x,y,s(z)) -> s(f(|0|(),|1|(),z)) The estimated dependency graph contains the following SCCs: (no SCCs)