YES We show the termination of the TRS R: max(L(x)) -> x max(N(L(|0|()),L(y))) -> y max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: max#(N(L(s(x)),L(s(y)))) -> max#(N(L(x),L(y))) p2: max#(N(L(x),N(y,z))) -> max#(N(L(x),L(max(N(y,z))))) p3: max#(N(L(x),N(y,z))) -> max#(N(y,z)) and R consists of: r1: max(L(x)) -> x r2: max(N(L(|0|()),L(y))) -> y r3: max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) r4: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) The estimated dependency graph contains the following SCCs: {p3} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: max#(N(L(x),N(y,z))) -> max#(N(y,z)) and R consists of: r1: max(L(x)) -> x r2: max(N(L(|0|()),L(y))) -> y r3: max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) r4: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: max# > N > L argument filter: pi(max#) = [1] pi(N) = [2] pi(L) = [] 2. lexicographic path order with precedence: precedence: N > max# > L argument filter: pi(max#) = 1 pi(N) = 2 pi(L) = [] 3. lexicographic path order with precedence: precedence: N > max# > L argument filter: pi(max#) = [1] pi(N) = 2 pi(L) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: max#(N(L(s(x)),L(s(y)))) -> max#(N(L(x),L(y))) and R consists of: r1: max(L(x)) -> x r2: max(N(L(|0|()),L(y))) -> y r3: max(N(L(s(x)),L(s(y)))) -> s(max(N(L(x),L(y)))) r4: max(N(L(x),N(y,z))) -> max(N(L(x),L(max(N(y,z))))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: L > N > max# > s argument filter: pi(max#) = [1] pi(N) = [1, 2] pi(L) = 1 pi(s) = [1] 2. lexicographic path order with precedence: precedence: N > max# > s > L argument filter: pi(max#) = [1] pi(N) = [1, 2] pi(L) = [] pi(s) = [] 3. lexicographic path order with precedence: precedence: L > N > max# > s argument filter: pi(max#) = [1] pi(N) = [1, 2] pi(L) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.