YES We show the termination of the TRS R: f(x,|0|()) -> s(|0|()) f(s(x),s(y)) -> s(f(x,y)) g(|0|(),x) -> g(f(x,x),x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y)) -> f#(x,y) p2: g#(|0|(),x) -> g#(f(x,x),x) p3: g#(|0|(),x) -> f#(x,x) and R consists of: r1: f(x,|0|()) -> s(|0|()) r2: f(s(x),s(y)) -> s(f(x,y)) r3: g(|0|(),x) -> g(f(x,x),x) The estimated dependency graph contains the following SCCs: {p2} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(|0|(),x) -> g#(f(x,x),x) and R consists of: r1: f(x,|0|()) -> s(|0|()) r2: f(s(x),s(y)) -> s(f(x,y)) r3: g(|0|(),x) -> g(f(x,x),x) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > f > s > g# argument filter: pi(g#) = [1, 2] pi(|0|) = [] pi(f) = [] pi(s) = [] 2. lexicographic path order with precedence: precedence: f > s > |0| > g# argument filter: pi(g#) = 2 pi(|0|) = [] pi(f) = [] pi(s) = [] 3. lexicographic path order with precedence: precedence: s > f > |0| > g# argument filter: pi(g#) = 2 pi(|0|) = [] pi(f) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(x),s(y)) -> f#(x,y) and R consists of: r1: f(x,|0|()) -> s(|0|()) r2: f(s(x),s(y)) -> s(f(x,y)) r3: g(|0|(),x) -> g(f(x,x),x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = 1 pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = 1 pi(s) = 1 3. lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = 1 pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.