YES We show the termination of the TRS R: f(x,y,w,w,a()) -> g1(x,x,y,w) f(x,y,w,a(),a()) -> g1(y,x,x,w) f(x,y,a(),a(),w) -> g2(x,y,y,w) f(x,y,a(),w,w) -> g2(y,y,x,w) g1(x,x,y,a()) -> h(x,y) g1(y,x,x,a()) -> h(x,y) g2(x,y,y,a()) -> h(x,y) g2(y,y,x,a()) -> h(x,y) h(x,x) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y,w,w,a()) -> g1#(x,x,y,w) p2: f#(x,y,w,a(),a()) -> g1#(y,x,x,w) p3: f#(x,y,a(),a(),w) -> g2#(x,y,y,w) p4: f#(x,y,a(),w,w) -> g2#(y,y,x,w) p5: g1#(x,x,y,a()) -> h#(x,y) p6: g1#(y,x,x,a()) -> h#(x,y) p7: g2#(x,y,y,a()) -> h#(x,y) p8: g2#(y,y,x,a()) -> h#(x,y) and R consists of: r1: f(x,y,w,w,a()) -> g1(x,x,y,w) r2: f(x,y,w,a(),a()) -> g1(y,x,x,w) r3: f(x,y,a(),a(),w) -> g2(x,y,y,w) r4: f(x,y,a(),w,w) -> g2(y,y,x,w) r5: g1(x,x,y,a()) -> h(x,y) r6: g1(y,x,x,a()) -> h(x,y) r7: g2(x,y,y,a()) -> h(x,y) r8: g2(y,y,x,a()) -> h(x,y) r9: h(x,x) -> x The estimated dependency graph contains the following SCCs: (no SCCs)