YES

We show the termination of the TRS R:

  a__f(|0|()) -> cons(|0|(),f(s(|0|())))
  a__f(s(|0|())) -> a__f(a__p(s(|0|())))
  a__p(s(X)) -> mark(X)
  mark(f(X)) -> a__f(mark(X))
  mark(p(X)) -> a__p(mark(X))
  mark(|0|()) -> |0|()
  mark(cons(X1,X2)) -> cons(mark(X1),X2)
  mark(s(X)) -> s(mark(X))
  a__f(X) -> f(X)
  a__p(X) -> p(X)

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: a__f#(s(|0|())) -> a__p#(s(|0|()))
p3: a__p#(s(X)) -> mark#(X)
p4: mark#(f(X)) -> a__f#(mark(X))
p5: mark#(f(X)) -> mark#(X)
p6: mark#(p(X)) -> a__p#(mark(X))
p7: mark#(p(X)) -> mark#(X)
p8: mark#(cons(X1,X2)) -> mark#(X1)
p9: mark#(s(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3, p4, p5, p6, p7, p8, p9}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: a__f#(s(|0|())) -> a__p#(s(|0|()))
p3: a__p#(s(X)) -> mark#(X)
p4: mark#(s(X)) -> mark#(X)
p5: mark#(cons(X1,X2)) -> mark#(X1)
p6: mark#(p(X)) -> mark#(X)
p7: mark#(p(X)) -> a__p#(mark(X))
p8: mark#(f(X)) -> mark#(X)
p9: mark#(f(X)) -> a__f#(mark(X))

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        cons > a__f# > f > a__f > mark > mark# > a__p# > p > a__p > |0| > s
      
      argument filter:
    
        pi(a__f#) = 1
        pi(s) = [1]
        pi(|0|) = []
        pi(a__p) = 1
        pi(a__p#) = 1
        pi(mark#) = 1
        pi(cons) = 1
        pi(p) = 1
        pi(mark) = 1
        pi(f) = 1
        pi(a__f) = 1
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        cons > mark > a__f > a__p > f > mark# > a__f# > a__p# > p > |0| > s
      
      argument filter:
    
        pi(a__f#) = []
        pi(s) = []
        pi(|0|) = []
        pi(a__p) = [1]
        pi(a__p#) = []
        pi(mark#) = []
        pi(cons) = 1
        pi(p) = [1]
        pi(mark) = [1]
        pi(f) = []
        pi(a__f) = []
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        a__p > a__f# > f > a__f > |0| > cons > mark > a__p# > mark# > p > s
      
      argument filter:
    
        pi(a__f#) = []
        pi(s) = []
        pi(|0|) = []
        pi(a__p) = 1
        pi(a__p#) = []
        pi(mark#) = []
        pi(cons) = [1]
        pi(p) = [1]
        pi(mark) = 1
        pi(f) = []
        pi(a__f) = []
    

The next rules are strictly ordered:

  p2, p3, p4, p7, p9

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))
p2: mark#(cons(X1,X2)) -> mark#(X1)
p3: mark#(p(X)) -> mark#(X)
p4: mark#(f(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The estimated dependency graph contains the following SCCs:

  {p1}
  {p2, p3, p4}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: a__f#(s(|0|())) -> a__f#(a__p(s(|0|())))

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  r1, r2, r3, r4, r5, r6, r7, r8, r9, r10

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        f > cons > s > mark > a__p > p > |0| > a__f > a__f#
      
      argument filter:
    
        pi(a__f#) = [1]
        pi(s) = 1
        pi(|0|) = []
        pi(a__p) = 1
        pi(a__f) = 1
        pi(cons) = 1
        pi(f) = 1
        pi(mark) = 1
        pi(p) = 1
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        cons > |0| > a__f# > f > s > a__f > p > a__p > mark
      
      argument filter:
    
        pi(a__f#) = [1]
        pi(s) = [1]
        pi(|0|) = []
        pi(a__p) = 1
        pi(a__f) = 1
        pi(cons) = 1
        pi(f) = 1
        pi(mark) = 1
        pi(p) = 1
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        mark > a__f# > s > f > a__p > |0| > a__f > cons > p
      
      argument filter:
    
        pi(a__f#) = 1
        pi(s) = [1]
        pi(|0|) = []
        pi(a__p) = []
        pi(a__f) = 1
        pi(cons) = []
        pi(f) = 1
        pi(mark) = [1]
        pi(p) = []
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: mark#(cons(X1,X2)) -> mark#(X1)
p2: mark#(f(X)) -> mark#(X)
p3: mark#(p(X)) -> mark#(X)

and R consists of:

r1: a__f(|0|()) -> cons(|0|(),f(s(|0|())))
r2: a__f(s(|0|())) -> a__f(a__p(s(|0|())))
r3: a__p(s(X)) -> mark(X)
r4: mark(f(X)) -> a__f(mark(X))
r5: mark(p(X)) -> a__p(mark(X))
r6: mark(|0|()) -> |0|()
r7: mark(cons(X1,X2)) -> cons(mark(X1),X2)
r8: mark(s(X)) -> s(mark(X))
r9: a__f(X) -> f(X)
r10: a__p(X) -> p(X)

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        p > f > mark# > cons
      
      argument filter:
    
        pi(mark#) = 1
        pi(cons) = [1, 2]
        pi(f) = [1]
        pi(p) = [1]
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        mark# > p > f > cons
      
      argument filter:
    
        pi(mark#) = []
        pi(cons) = [1, 2]
        pi(f) = []
        pi(p) = []
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        mark# > p > f > cons
      
      argument filter:
    
        pi(mark#) = []
        pi(cons) = [1, 2]
        pi(f) = []
        pi(p) = []
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.