YES We show the termination of the TRS R: f(X) -> cons(X,n__f(g(X))) g(|0|()) -> s(|0|()) g(s(X)) -> s(s(g(X))) sel(|0|(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) f(X) -> n__f(X) activate(n__f(X)) -> f(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(X) -> g#(X) p2: g#(s(X)) -> g#(X) p3: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p4: sel#(s(X),cons(Y,Z)) -> activate#(Z) p5: activate#(n__f(X)) -> f#(X) and R consists of: r1: f(X) -> cons(X,n__f(g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: activate(n__f(X)) -> f(X) r8: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: f(X) -> cons(X,n__f(g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: activate(n__f(X)) -> f(X) r8: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: n__f > g > cons > f > |0| > s > sel# > activate argument filter: pi(sel#) = 1 pi(s) = 1 pi(cons) = 1 pi(activate) = [1] pi(g) = 1 pi(|0|) = [] pi(f) = 1 pi(n__f) = 1 2. lexicographic path order with precedence: precedence: n__f > g > cons > f > sel# > s > |0| > activate argument filter: pi(sel#) = [1] pi(s) = [1] pi(cons) = 1 pi(activate) = [1] pi(g) = [1] pi(|0|) = [] pi(f) = [1] pi(n__f) = 1 3. lexicographic path order with precedence: precedence: n__f > g > cons > f > s > |0| > activate > sel# argument filter: pi(sel#) = 1 pi(s) = [1] pi(cons) = [1] pi(activate) = [1] pi(g) = [] pi(|0|) = [] pi(f) = 1 pi(n__f) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(X)) -> g#(X) and R consists of: r1: f(X) -> cons(X,n__f(g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: activate(n__f(X)) -> f(X) r8: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > g# argument filter: pi(g#) = [1] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > g# argument filter: pi(g#) = [1] pi(s) = [1] 3. lexicographic path order with precedence: precedence: s > g# argument filter: pi(g#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8 We remove them from the problem. Then no dependency pair remains.