YES We show the termination of the TRS R: active(f(f(X))) -> mark(c(f(g(f(X))))) active(c(X)) -> mark(d(X)) active(h(X)) -> mark(c(d(X))) active(f(X)) -> f(active(X)) active(h(X)) -> h(active(X)) f(mark(X)) -> mark(f(X)) h(mark(X)) -> mark(h(X)) proper(f(X)) -> f(proper(X)) proper(c(X)) -> c(proper(X)) proper(g(X)) -> g(proper(X)) proper(d(X)) -> d(proper(X)) proper(h(X)) -> h(proper(X)) f(ok(X)) -> ok(f(X)) c(ok(X)) -> ok(c(X)) g(ok(X)) -> ok(g(X)) d(ok(X)) -> ok(d(X)) h(ok(X)) -> ok(h(X)) top(mark(X)) -> top(proper(X)) top(ok(X)) -> top(active(X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(f(f(X))) -> c#(f(g(f(X)))) p2: active#(f(f(X))) -> f#(g(f(X))) p3: active#(f(f(X))) -> g#(f(X)) p4: active#(c(X)) -> d#(X) p5: active#(h(X)) -> c#(d(X)) p6: active#(h(X)) -> d#(X) p7: active#(f(X)) -> f#(active(X)) p8: active#(f(X)) -> active#(X) p9: active#(h(X)) -> h#(active(X)) p10: active#(h(X)) -> active#(X) p11: f#(mark(X)) -> f#(X) p12: h#(mark(X)) -> h#(X) p13: proper#(f(X)) -> f#(proper(X)) p14: proper#(f(X)) -> proper#(X) p15: proper#(c(X)) -> c#(proper(X)) p16: proper#(c(X)) -> proper#(X) p17: proper#(g(X)) -> g#(proper(X)) p18: proper#(g(X)) -> proper#(X) p19: proper#(d(X)) -> d#(proper(X)) p20: proper#(d(X)) -> proper#(X) p21: proper#(h(X)) -> h#(proper(X)) p22: proper#(h(X)) -> proper#(X) p23: f#(ok(X)) -> f#(X) p24: c#(ok(X)) -> c#(X) p25: g#(ok(X)) -> g#(X) p26: d#(ok(X)) -> d#(X) p27: h#(ok(X)) -> h#(X) p28: top#(mark(X)) -> top#(proper(X)) p29: top#(mark(X)) -> proper#(X) p30: top#(ok(X)) -> top#(active(X)) p31: top#(ok(X)) -> active#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p28, p30} {p8, p10} {p14, p16, p18, p20, p22} {p24} {p11, p23} {p25} {p26} {p12, p27} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(ok(X)) -> top#(active(X)) p2: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g > mark > c > h > d > f > proper > ok > active > top# argument filter: pi(top#) = [1] pi(ok) = [1] pi(active) = 1 pi(mark) = 1 pi(proper) = 1 pi(f) = 1 pi(h) = [1] pi(c) = 1 pi(g) = 1 pi(d) = 1 2. lexicographic path order with precedence: precedence: c > top# > ok > active > d > h > f > g > mark > proper argument filter: pi(top#) = [1] pi(ok) = [1] pi(active) = [1] pi(mark) = 1 pi(proper) = 1 pi(f) = 1 pi(h) = [] pi(c) = 1 pi(g) = 1 pi(d) = 1 3. lexicographic path order with precedence: precedence: top# > proper > d > g > active > f > h > mark > c > ok argument filter: pi(top#) = [] pi(ok) = [] pi(active) = 1 pi(mark) = [] pi(proper) = [] pi(f) = [] pi(h) = [] pi(c) = [] pi(g) = [] pi(d) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: top#(mark(X)) -> top#(proper(X)) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ok > proper > d > g > c > h > mark > f > top# argument filter: pi(top#) = 1 pi(mark) = 1 pi(proper) = 1 pi(f) = 1 pi(h) = 1 pi(ok) = 1 pi(c) = 1 pi(g) = 1 pi(d) = 1 2. lexicographic path order with precedence: precedence: ok > proper > d > g > c > h > f > top# > mark argument filter: pi(top#) = [1] pi(mark) = [1] pi(proper) = 1 pi(f) = 1 pi(h) = 1 pi(ok) = [1] pi(c) = 1 pi(g) = 1 pi(d) = 1 3. lexicographic path order with precedence: precedence: ok > proper > d > g > c > h > mark > f > top# argument filter: pi(top#) = [] pi(mark) = [] pi(proper) = [1] pi(f) = 1 pi(h) = [] pi(ok) = 1 pi(c) = [1] pi(g) = 1 pi(d) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(h(X)) -> active#(X) p2: active#(f(X)) -> active#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: active# > f > h argument filter: pi(active#) = 1 pi(h) = [1] pi(f) = 1 2. lexicographic path order with precedence: precedence: active# > f > h argument filter: pi(active#) = 1 pi(h) = [1] pi(f) = 1 3. lexicographic path order with precedence: precedence: active# > f > h argument filter: pi(active#) = 1 pi(h) = [1] pi(f) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: proper#(h(X)) -> proper#(X) p2: proper#(d(X)) -> proper#(X) p3: proper#(g(X)) -> proper#(X) p4: proper#(c(X)) -> proper#(X) p5: proper#(f(X)) -> proper#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: proper# > f > c > g > d > h argument filter: pi(proper#) = [1] pi(h) = 1 pi(d) = 1 pi(g) = [1] pi(c) = 1 pi(f) = 1 2. lexicographic path order with precedence: precedence: proper# > f > c > g > d > h argument filter: pi(proper#) = 1 pi(h) = 1 pi(d) = 1 pi(g) = 1 pi(c) = 1 pi(f) = [1] 3. lexicographic path order with precedence: precedence: proper# > f > c > g > d > h argument filter: pi(proper#) = 1 pi(h) = [1] pi(d) = [1] pi(g) = [1] pi(c) = [1] pi(f) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(ok(X)) -> c#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ok > c# argument filter: pi(c#) = [1] pi(ok) = [1] 2. lexicographic path order with precedence: precedence: ok > c# argument filter: pi(c#) = [1] pi(ok) = [1] 3. lexicographic path order with precedence: precedence: ok > c# argument filter: pi(c#) = [1] pi(ok) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(mark(X)) -> f#(X) p2: f#(ok(X)) -> f#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: f# > ok > mark argument filter: pi(f#) = 1 pi(mark) = [1] pi(ok) = 1 2. lexicographic path order with precedence: precedence: f# > ok > mark argument filter: pi(f#) = 1 pi(mark) = [1] pi(ok) = 1 3. lexicographic path order with precedence: precedence: f# > ok > mark argument filter: pi(f#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(ok(X)) -> g#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ok > g# argument filter: pi(g#) = [1] pi(ok) = [1] 2. lexicographic path order with precedence: precedence: ok > g# argument filter: pi(g#) = [1] pi(ok) = [1] 3. lexicographic path order with precedence: precedence: ok > g# argument filter: pi(g#) = [1] pi(ok) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: d#(ok(X)) -> d#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: ok > d# argument filter: pi(d#) = [1] pi(ok) = [1] 2. lexicographic path order with precedence: precedence: ok > d# argument filter: pi(d#) = [1] pi(ok) = [1] 3. lexicographic path order with precedence: precedence: ok > d# argument filter: pi(d#) = [1] pi(ok) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(ok(X)) -> h#(X) and R consists of: r1: active(f(f(X))) -> mark(c(f(g(f(X))))) r2: active(c(X)) -> mark(d(X)) r3: active(h(X)) -> mark(c(d(X))) r4: active(f(X)) -> f(active(X)) r5: active(h(X)) -> h(active(X)) r6: f(mark(X)) -> mark(f(X)) r7: h(mark(X)) -> mark(h(X)) r8: proper(f(X)) -> f(proper(X)) r9: proper(c(X)) -> c(proper(X)) r10: proper(g(X)) -> g(proper(X)) r11: proper(d(X)) -> d(proper(X)) r12: proper(h(X)) -> h(proper(X)) r13: f(ok(X)) -> ok(f(X)) r14: c(ok(X)) -> ok(c(X)) r15: g(ok(X)) -> ok(g(X)) r16: d(ok(X)) -> ok(d(X)) r17: h(ok(X)) -> ok(h(X)) r18: top(mark(X)) -> top(proper(X)) r19: top(ok(X)) -> top(active(X)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: h# > ok > mark argument filter: pi(h#) = 1 pi(mark) = [1] pi(ok) = 1 2. lexicographic path order with precedence: precedence: h# > ok > mark argument filter: pi(h#) = 1 pi(mark) = [1] pi(ok) = 1 3. lexicographic path order with precedence: precedence: h# > ok > mark argument filter: pi(h#) = 1 pi(mark) = [1] pi(ok) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19 We remove them from the problem. Then no dependency pair remains.