YES We show the termination of the TRS R: a__g(X) -> a__h(X) a__c() -> d() a__h(d()) -> a__g(c()) mark(g(X)) -> a__g(X) mark(h(X)) -> a__h(X) mark(c()) -> a__c() mark(d()) -> d() a__g(X) -> g(X) a__h(X) -> h(X) a__c() -> c() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__g#(X) -> a__h#(X) p2: a__h#(d()) -> a__g#(c()) p3: mark#(g(X)) -> a__g#(X) p4: mark#(h(X)) -> a__h#(X) p5: mark#(c()) -> a__c#() and R consists of: r1: a__g(X) -> a__h(X) r2: a__c() -> d() r3: a__h(d()) -> a__g(c()) r4: mark(g(X)) -> a__g(X) r5: mark(h(X)) -> a__h(X) r6: mark(c()) -> a__c() r7: mark(d()) -> d() r8: a__g(X) -> g(X) r9: a__h(X) -> h(X) r10: a__c() -> c() The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a__g#(X) -> a__h#(X) p2: a__h#(d()) -> a__g#(c()) and R consists of: r1: a__g(X) -> a__h(X) r2: a__c() -> d() r3: a__h(d()) -> a__g(c()) r4: mark(g(X)) -> a__g(X) r5: mark(h(X)) -> a__h(X) r6: mark(c()) -> a__c() r7: mark(d()) -> d() r8: a__g(X) -> g(X) r9: a__h(X) -> h(X) r10: a__c() -> c() The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: d > a__g# > a__h# > c argument filter: pi(a__g#) = [1] pi(a__h#) = [1] pi(d) = [] pi(c) = [] 2. lexicographic path order with precedence: precedence: c > a__g# > d > a__h# argument filter: pi(a__g#) = [1] pi(a__h#) = [1] pi(d) = [] pi(c) = [] 3. lexicographic path order with precedence: precedence: c > a__g# > d > a__h# argument filter: pi(a__g#) = [1] pi(a__h#) = 1 pi(d) = [] pi(c) = [] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.