YES We show the termination of the TRS R: a__f(X,X) -> a__f(a(),b()) a__b() -> a() mark(f(X1,X2)) -> a__f(mark(X1),X2) mark(b()) -> a__b() mark(a()) -> a() a__f(X1,X2) -> f(X1,X2) a__b() -> b() -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(X,X) -> a__f#(a(),b()) p2: mark#(f(X1,X2)) -> a__f#(mark(X1),X2) p3: mark#(f(X1,X2)) -> mark#(X1) p4: mark#(b()) -> a__b#() and R consists of: r1: a__f(X,X) -> a__f(a(),b()) r2: a__b() -> a() r3: mark(f(X1,X2)) -> a__f(mark(X1),X2) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2) -> f(X1,X2) r7: a__b() -> b() The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X1,X2)) -> mark#(X1) and R consists of: r1: a__f(X,X) -> a__f(a(),b()) r2: a__b() -> a() r3: mark(f(X1,X2)) -> a__f(mark(X1),X2) r4: mark(b()) -> a__b() r5: mark(a()) -> a() r6: a__f(X1,X2) -> f(X1,X2) r7: a__b() -> b() The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: mark# > f argument filter: pi(mark#) = [1] pi(f) = 1 2. lexicographic path order with precedence: precedence: f > mark# argument filter: pi(mark#) = [1] pi(f) = [1] 3. lexicographic path order with precedence: precedence: f > mark# argument filter: pi(mark#) = [] pi(f) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.