YES We show the termination of the TRS R: and(true(),X) -> activate(X) and(false(),Y) -> false() if(true(),X,Y) -> activate(X) if(false(),X,Y) -> activate(Y) add(|0|(),X) -> activate(X) add(s(X),Y) -> s(n__add(activate(X),activate(Y))) first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) from(X) -> cons(activate(X),n__from(n__s(activate(X)))) add(X1,X2) -> n__add(X1,X2) first(X1,X2) -> n__first(X1,X2) from(X) -> n__from(X) s(X) -> n__s(X) activate(n__add(X1,X2)) -> add(X1,X2) activate(n__first(X1,X2)) -> first(X1,X2) activate(n__from(X)) -> from(X) activate(n__s(X)) -> s(X) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(true(),X) -> activate#(X) p2: if#(true(),X,Y) -> activate#(X) p3: if#(false(),X,Y) -> activate#(Y) p4: add#(|0|(),X) -> activate#(X) p5: add#(s(X),Y) -> s#(n__add(activate(X),activate(Y))) p6: add#(s(X),Y) -> activate#(X) p7: add#(s(X),Y) -> activate#(Y) p8: first#(s(X),cons(Y,Z)) -> activate#(Y) p9: first#(s(X),cons(Y,Z)) -> activate#(X) p10: first#(s(X),cons(Y,Z)) -> activate#(Z) p11: from#(X) -> activate#(X) p12: activate#(n__add(X1,X2)) -> add#(X1,X2) p13: activate#(n__first(X1,X2)) -> first#(X1,X2) p14: activate#(n__from(X)) -> from#(X) p15: activate#(n__s(X)) -> s#(X) and R consists of: r1: and(true(),X) -> activate(X) r2: and(false(),Y) -> false() r3: if(true(),X,Y) -> activate(X) r4: if(false(),X,Y) -> activate(Y) r5: add(|0|(),X) -> activate(X) r6: add(s(X),Y) -> s(n__add(activate(X),activate(Y))) r7: first(|0|(),X) -> nil() r8: first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: add(X1,X2) -> n__add(X1,X2) r11: first(X1,X2) -> n__first(X1,X2) r12: from(X) -> n__from(X) r13: s(X) -> n__s(X) r14: activate(n__add(X1,X2)) -> add(X1,X2) r15: activate(n__first(X1,X2)) -> first(X1,X2) r16: activate(n__from(X)) -> from(X) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The estimated dependency graph contains the following SCCs: {p4, p6, p7, p8, p9, p10, p11, p12, p13, p14} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__add(X1,X2)) -> add#(X1,X2) p2: add#(s(X),Y) -> activate#(Y) p3: activate#(n__from(X)) -> from#(X) p4: from#(X) -> activate#(X) p5: activate#(n__first(X1,X2)) -> first#(X1,X2) p6: first#(s(X),cons(Y,Z)) -> activate#(Z) p7: first#(s(X),cons(Y,Z)) -> activate#(X) p8: first#(s(X),cons(Y,Z)) -> activate#(Y) p9: add#(s(X),Y) -> activate#(X) p10: add#(|0|(),X) -> activate#(X) and R consists of: r1: and(true(),X) -> activate(X) r2: and(false(),Y) -> false() r3: if(true(),X,Y) -> activate(X) r4: if(false(),X,Y) -> activate(Y) r5: add(|0|(),X) -> activate(X) r6: add(s(X),Y) -> s(n__add(activate(X),activate(Y))) r7: first(|0|(),X) -> nil() r8: first(s(X),cons(Y,Z)) -> cons(activate(Y),n__first(activate(X),activate(Z))) r9: from(X) -> cons(activate(X),n__from(n__s(activate(X)))) r10: add(X1,X2) -> n__add(X1,X2) r11: first(X1,X2) -> n__first(X1,X2) r12: from(X) -> n__from(X) r13: s(X) -> n__s(X) r14: activate(n__add(X1,X2)) -> add(X1,X2) r15: activate(n__first(X1,X2)) -> first(X1,X2) r16: activate(n__from(X)) -> from(X) r17: activate(n__s(X)) -> s(X) r18: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > cons > n__first > first# > n__from > from# > s > n__add > add# > activate# argument filter: pi(activate#) = [1] pi(n__add) = [1, 2] pi(add#) = [1, 2] pi(s) = [1] pi(n__from) = [1] pi(from#) = [1] pi(n__first) = [1, 2] pi(first#) = [1, 2] pi(cons) = [1, 2] pi(|0|) = [] 2. lexicographic path order with precedence: precedence: activate# > |0| > cons > first# > n__first > from# > n__from > s > add# > n__add argument filter: pi(activate#) = 1 pi(n__add) = [1, 2] pi(add#) = 1 pi(s) = 1 pi(n__from) = [1] pi(from#) = 1 pi(n__first) = 1 pi(first#) = 2 pi(cons) = 2 pi(|0|) = [] 3. lexicographic path order with precedence: precedence: |0| > cons > first# > n__first > from# > n__from > s > add# > n__add > activate# argument filter: pi(activate#) = [] pi(n__add) = [1, 2] pi(add#) = 1 pi(s) = [1] pi(n__from) = 1 pi(from#) = [1] pi(n__first) = 1 pi(first#) = [2] pi(cons) = [2] pi(|0|) = [] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7, p8, p9, p10 We remove them from the problem. Then no dependency pair remains.