YES We show the termination of the TRS R: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) sum(cons(|0|(),x),y) -> sum(x,y) sum(nil(),y) -> y weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) weight(cons(n,nil())) -> n -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) p3: weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(|0|(),x))) p4: weight#(cons(n,cons(m,x))) -> sum#(cons(n,cons(m,x)),cons(|0|(),x)) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The estimated dependency graph contains the following SCCs: {p3} {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: weight#(cons(n,cons(m,x))) -> weight#(sum(cons(n,cons(m,x)),cons(|0|(),x))) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The set of usable rules consists of r1, r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > nil > sum > |0| > cons > weight# argument filter: pi(weight#) = 1 pi(cons) = [2] pi(sum) = 2 pi(|0|) = [] pi(nil) = [] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > nil > sum > |0| > cons > weight# argument filter: pi(weight#) = [] pi(cons) = 2 pi(sum) = [2] pi(|0|) = [] pi(nil) = [] pi(s) = [] 3. lexicographic path order with precedence: precedence: s > nil > sum > |0| > cons > weight# argument filter: pi(weight#) = [] pi(cons) = 2 pi(sum) = [2] pi(|0|) = [] pi(nil) = [] pi(s) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sum#(cons(s(n),x),cons(m,y)) -> sum#(cons(n,x),cons(s(m),y)) p2: sum#(cons(|0|(),x),y) -> sum#(x,y) and R consists of: r1: sum(cons(s(n),x),cons(m,y)) -> sum(cons(n,x),cons(s(m),y)) r2: sum(cons(|0|(),x),y) -> sum(x,y) r3: sum(nil(),y) -> y r4: weight(cons(n,cons(m,x))) -> weight(sum(cons(n,cons(m,x)),cons(|0|(),x))) r5: weight(cons(n,nil())) -> n The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: sum# > |0| > cons > s argument filter: pi(sum#) = [1, 2] pi(cons) = [1, 2] pi(s) = [1] pi(|0|) = [] 2. lexicographic path order with precedence: precedence: sum# > |0| > s > cons argument filter: pi(sum#) = 2 pi(cons) = 1 pi(s) = 1 pi(|0|) = [] 3. lexicographic path order with precedence: precedence: sum# > |0| > cons > s argument filter: pi(sum#) = [2] pi(cons) = 1 pi(s) = 1 pi(|0|) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.