YES We show the termination of the TRS R: quot(|0|(),s(y),s(z)) -> |0|() quot(s(x),s(y),z) -> quot(x,y,z) plus(|0|(),y) -> y plus(s(x),y) -> s(plus(x,y)) quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: plus#(s(x),y) -> plus#(x,y) p3: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) p4: quot#(x,|0|(),s(z)) -> plus#(z,s(|0|())) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1, p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y),z) -> quot#(x,y,z) p2: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: plus > quot# > |0| > s argument filter: pi(quot#) = 1 pi(s) = [1] pi(|0|) = [] pi(plus) = [1, 2] 2. lexicographic path order with precedence: precedence: plus > quot# > s > |0| argument filter: pi(quot#) = [] pi(s) = [1] pi(|0|) = [] pi(plus) = [1] 3. lexicographic path order with precedence: precedence: s > plus > |0| > quot# argument filter: pi(quot#) = [] pi(s) = [] pi(|0|) = [] pi(plus) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(x,|0|(),s(z)) -> quot#(x,plus(z,s(|0|())),s(z)) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of r3, r4 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > plus > quot# > s argument filter: pi(quot#) = 2 pi(|0|) = [] pi(s) = [] pi(plus) = [2] 2. lexicographic path order with precedence: precedence: |0| > plus > s > quot# argument filter: pi(quot#) = 2 pi(|0|) = [] pi(s) = [] pi(plus) = [] 3. lexicographic path order with precedence: precedence: s > |0| > plus > quot# argument filter: pi(quot#) = [2] pi(|0|) = [] pi(s) = [] pi(plus) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: plus#(s(x),y) -> plus#(x,y) and R consists of: r1: quot(|0|(),s(y),s(z)) -> |0|() r2: quot(s(x),s(y),z) -> quot(x,y,z) r3: plus(|0|(),y) -> y r4: plus(s(x),y) -> s(plus(x,y)) r5: quot(x,|0|(),s(z)) -> s(quot(x,plus(z,s(|0|())),s(z))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: plus# > s argument filter: pi(plus#) = [1, 2] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > plus# argument filter: pi(plus#) = 1 pi(s) = 1 3. lexicographic path order with precedence: precedence: s > plus# argument filter: pi(plus#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.