YES We show the termination of the TRS R: a(b(x)) -> b(a(a(x))) b(c(x)) -> c(b(b(x))) c(a(x)) -> a(c(c(x))) u(a(x)) -> x v(b(x)) -> x w(c(x)) -> x a(u(x)) -> x b(v(x)) -> x c(w(x)) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(b(x)) -> b#(a(a(x))) p2: a#(b(x)) -> a#(a(x)) p3: a#(b(x)) -> a#(x) p4: b#(c(x)) -> c#(b(b(x))) p5: b#(c(x)) -> b#(b(x)) p6: b#(c(x)) -> b#(x) p7: c#(a(x)) -> a#(c(c(x))) p8: c#(a(x)) -> c#(c(x)) p9: c#(a(x)) -> c#(x) and R consists of: r1: a(b(x)) -> b(a(a(x))) r2: b(c(x)) -> c(b(b(x))) r3: c(a(x)) -> a(c(c(x))) r4: u(a(x)) -> x r5: v(b(x)) -> x r6: w(c(x)) -> x r7: a(u(x)) -> x r8: b(v(x)) -> x r9: c(w(x)) -> x The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(b(x)) -> b#(a(a(x))) p2: b#(c(x)) -> b#(x) p3: b#(c(x)) -> b#(b(x)) p4: b#(c(x)) -> c#(b(b(x))) p5: c#(a(x)) -> c#(x) p6: c#(a(x)) -> c#(c(x)) p7: c#(a(x)) -> a#(c(c(x))) p8: a#(b(x)) -> a#(x) p9: a#(b(x)) -> a#(a(x)) and R consists of: r1: a(b(x)) -> b(a(a(x))) r2: b(c(x)) -> c(b(b(x))) r3: c(a(x)) -> a(c(c(x))) r4: u(a(x)) -> x r5: v(b(x)) -> x r6: w(c(x)) -> x r7: a(u(x)) -> x r8: b(v(x)) -> x r9: c(w(x)) -> x The set of usable rules consists of r1, r2, r3, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: w > v > u > a# > c# > a > b > b# > c argument filter: pi(a#) = 1 pi(b) = 1 pi(b#) = 1 pi(a) = 1 pi(c) = 1 pi(c#) = 1 pi(u) = [1] pi(v) = [1] pi(w) = 1 2. lexicographic path order with precedence: precedence: w > v > u > b > c > c# > a# > b# > a argument filter: pi(a#) = [] pi(b) = 1 pi(b#) = [1] pi(a) = [] pi(c) = [1] pi(c#) = [] pi(u) = [1] pi(v) = [1] pi(w) = 1 3. lexicographic path order with precedence: precedence: w > v > u > c# > a > a# > b# > b > c argument filter: pi(a#) = [] pi(b) = 1 pi(b#) = [] pi(a) = [] pi(c) = [1] pi(c#) = [] pi(u) = 1 pi(v) = 1 pi(w) = 1 The next rules are strictly ordered: p1, p2, p3, p4, p7 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: c#(a(x)) -> c#(x) p2: c#(a(x)) -> c#(c(x)) p3: a#(b(x)) -> a#(x) p4: a#(b(x)) -> a#(a(x)) and R consists of: r1: a(b(x)) -> b(a(a(x))) r2: b(c(x)) -> c(b(b(x))) r3: c(a(x)) -> a(c(c(x))) r4: u(a(x)) -> x r5: v(b(x)) -> x r6: w(c(x)) -> x r7: a(u(x)) -> x r8: b(v(x)) -> x r9: c(w(x)) -> x The estimated dependency graph contains the following SCCs: {p1, p2} {p3, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: c#(a(x)) -> c#(x) p2: c#(a(x)) -> c#(c(x)) and R consists of: r1: a(b(x)) -> b(a(a(x))) r2: b(c(x)) -> c(b(b(x))) r3: c(a(x)) -> a(c(c(x))) r4: u(a(x)) -> x r5: v(b(x)) -> x r6: w(c(x)) -> x r7: a(u(x)) -> x r8: b(v(x)) -> x r9: c(w(x)) -> x The set of usable rules consists of r1, r2, r3, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: w > u > v > a > c > b > c# argument filter: pi(c#) = 1 pi(a) = 1 pi(c) = 1 pi(b) = 1 pi(v) = 1 pi(u) = [1] pi(w) = 1 2. lexicographic path order with precedence: precedence: w > u > v > c > b > c# > a argument filter: pi(c#) = [1] pi(a) = 1 pi(c) = 1 pi(b) = 1 pi(v) = [1] pi(u) = [1] pi(w) = [1] 3. lexicographic path order with precedence: precedence: u > w > v > c# > a > b > c argument filter: pi(c#) = [1] pi(a) = [1] pi(c) = 1 pi(b) = [] pi(v) = 1 pi(u) = 1 pi(w) = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(b(x)) -> a#(x) p2: a#(b(x)) -> a#(a(x)) and R consists of: r1: a(b(x)) -> b(a(a(x))) r2: b(c(x)) -> c(b(b(x))) r3: c(a(x)) -> a(c(c(x))) r4: u(a(x)) -> x r5: v(b(x)) -> x r6: w(c(x)) -> x r7: a(u(x)) -> x r8: b(v(x)) -> x r9: c(w(x)) -> x The set of usable rules consists of r1, r2, r3, r7, r8, r9 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: u > v > w > b > a > c > a# argument filter: pi(a#) = 1 pi(b) = 1 pi(a) = 1 pi(c) = 1 pi(w) = 1 pi(v) = [1] pi(u) = 1 2. lexicographic path order with precedence: precedence: u > v > w > a > c > b > a# argument filter: pi(a#) = 1 pi(b) = 1 pi(a) = 1 pi(c) = 1 pi(w) = [1] pi(v) = [1] pi(u) = [1] 3. lexicographic path order with precedence: precedence: u > v > w > b > c > a > a# argument filter: pi(a#) = 1 pi(b) = [1] pi(a) = 1 pi(c) = [] pi(w) = 1 pi(v) = 1 pi(u) = 1 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.