YES We show the termination of the TRS R: or(true(),y) -> true() or(x,true()) -> true() or(false(),false()) -> false() mem(x,nil()) -> false() mem(x,set(y)) -> =(x,y) mem(x,union(y,z)) -> or(mem(x,y),mem(x,z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mem#(x,union(y,z)) -> or#(mem(x,y),mem(x,z)) p2: mem#(x,union(y,z)) -> mem#(x,y) p3: mem#(x,union(y,z)) -> mem#(x,z) and R consists of: r1: or(true(),y) -> true() r2: or(x,true()) -> true() r3: or(false(),false()) -> false() r4: mem(x,nil()) -> false() r5: mem(x,set(y)) -> =(x,y) r6: mem(x,union(y,z)) -> or(mem(x,y),mem(x,z)) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mem#(x,union(y,z)) -> mem#(x,y) p2: mem#(x,union(y,z)) -> mem#(x,z) and R consists of: r1: or(true(),y) -> true() r2: or(x,true()) -> true() r3: or(false(),false()) -> false() r4: mem(x,nil()) -> false() r5: mem(x,set(y)) -> =(x,y) r6: mem(x,union(y,z)) -> or(mem(x,y),mem(x,z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: union > mem# argument filter: pi(mem#) = [1, 2] pi(union) = [1, 2] 2. lexicographic path order with precedence: precedence: union > mem# argument filter: pi(mem#) = 1 pi(union) = [1] 3. lexicographic path order with precedence: precedence: union > mem# argument filter: pi(mem#) = 1 pi(union) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains.