YES We show the termination of the TRS R: not(x) -> if(x,false(),true()) and(x,y) -> if(x,y,false()) or(x,y) -> if(x,true(),y) implies(x,y) -> if(x,y,true()) =(x,x) -> true() =(x,y) -> if(x,y,not(y)) if(true(),x,y) -> x if(false(),x,y) -> y if(x,x,if(x,false(),true())) -> true() =(x,y) -> if(x,y,if(y,false(),true())) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: not#(x) -> if#(x,false(),true()) p2: and#(x,y) -> if#(x,y,false()) p3: or#(x,y) -> if#(x,true(),y) p4: implies#(x,y) -> if#(x,y,true()) p5: =#(x,y) -> if#(x,y,not(y)) p6: =#(x,y) -> not#(y) p7: =#(x,y) -> if#(x,y,if(y,false(),true())) p8: =#(x,y) -> if#(y,false(),true()) and R consists of: r1: not(x) -> if(x,false(),true()) r2: and(x,y) -> if(x,y,false()) r3: or(x,y) -> if(x,true(),y) r4: implies(x,y) -> if(x,y,true()) r5: =(x,x) -> true() r6: =(x,y) -> if(x,y,not(y)) r7: if(true(),x,y) -> x r8: if(false(),x,y) -> y r9: if(x,x,if(x,false(),true())) -> true() r10: =(x,y) -> if(x,y,if(y,false(),true())) The estimated dependency graph contains the following SCCs: (no SCCs)