YES We show the termination of the TRS R: minus(minus(x)) -> x minus(h(x)) -> h(minus(x)) minus(f(x,y)) -> f(minus(y),minus(x)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(h(x)) -> minus#(x) p2: minus#(f(x,y)) -> minus#(y) p3: minus#(f(x,y)) -> minus#(x) and R consists of: r1: minus(minus(x)) -> x r2: minus(h(x)) -> h(minus(x)) r3: minus(f(x,y)) -> f(minus(y),minus(x)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(h(x)) -> minus#(x) p2: minus#(f(x,y)) -> minus#(x) p3: minus#(f(x,y)) -> minus#(y) and R consists of: r1: minus(minus(x)) -> x r2: minus(h(x)) -> h(minus(x)) r3: minus(f(x,y)) -> f(minus(y),minus(x)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: minus# > f > h argument filter: pi(minus#) = 1 pi(h) = [1] pi(f) = [1, 2] 2. lexicographic path order with precedence: precedence: minus# > f > h argument filter: pi(minus#) = [1] pi(h) = 1 pi(f) = 1 3. lexicographic path order with precedence: precedence: minus# > f > h argument filter: pi(minus#) = [1] pi(h) = [1] pi(f) = [] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.