YES We show the termination of the TRS R: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) u21(ackout(X),Y) -> u22(ackin(Y,X)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) p3: u21#(ackout(X),Y) -> ackin#(Y,X) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ackin#(s(X),s(Y)) -> u21#(ackin(s(X),Y),X) p2: u21#(ackout(X),Y) -> ackin#(Y,X) p3: ackin#(s(X),s(Y)) -> ackin#(s(X),Y) and R consists of: r1: ackin(s(X),s(Y)) -> u21(ackin(s(X),Y),X) r2: u21(ackout(X),Y) -> u22(ackin(Y,X)) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: u22 > u21 > ackin > ackin# > ackout > u21# > s argument filter: pi(ackin#) = 2 pi(s) = 1 pi(u21#) = 1 pi(ackin) = 2 pi(ackout) = 1 pi(u21) = 1 pi(u22) = 1 2. lexicographic path order with precedence: precedence: u22 > ackin > u21 > ackin# > ackout > u21# > s argument filter: pi(ackin#) = 2 pi(s) = 1 pi(u21#) = 1 pi(ackin) = 2 pi(ackout) = [1] pi(u21) = 1 pi(u22) = 1 3. lexicographic path order with precedence: precedence: u22 > ackin > u21 > ackin# > ackout > u21# > s argument filter: pi(ackin#) = [2] pi(s) = [1] pi(u21#) = [] pi(ackin) = [] pi(ackout) = [1] pi(u21) = 1 pi(u22) = 1 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.