YES We show the termination of the TRS R: -(x,|0|()) -> x -(s(x),s(y)) -> -(x,y) *(x,|0|()) -> |0|() *(x,s(y)) -> +(*(x,y),x) if(true(),x,y) -> x if(false(),x,y) -> y odd(|0|()) -> false() odd(s(|0|())) -> true() odd(s(s(x))) -> odd(x) half(|0|()) -> |0|() half(s(|0|())) -> |0|() half(s(s(x))) -> s(half(x)) if(true(),x,y) -> true() if(false(),x,y) -> false() pow(x,y) -> f(x,y,s(|0|())) f(x,|0|(),z) -> z f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) p2: *#(x,s(y)) -> *#(x,y) p3: odd#(s(s(x))) -> odd#(x) p4: half#(s(s(x))) -> half#(x) p5: pow#(x,y) -> f#(x,y,s(|0|())) p6: f#(x,s(y),z) -> if#(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) p7: f#(x,s(y),z) -> odd#(s(y)) p8: f#(x,s(y),z) -> f#(x,y,*(x,z)) p9: f#(x,s(y),z) -> *#(x,z) p10: f#(x,s(y),z) -> f#(*(x,x),half(s(y)),z) p11: f#(x,s(y),z) -> *#(x,x) p12: f#(x,s(y),z) -> half#(s(y)) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The estimated dependency graph contains the following SCCs: {p1} {p8, p10} {p2} {p3} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: -#(s(x),s(y)) -> -#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = 1 pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = 1 pi(s) = 1 3. lexicographic path order with precedence: precedence: s > -# argument filter: pi(-#) = 1 pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,s(y),z) -> f#(*(x,x),half(s(y)),z) p2: f#(x,s(y),z) -> f#(x,y,*(x,z)) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The set of usable rules consists of r3, r4, r10, r11, r12 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: half > s > + > |0| > * > f# argument filter: pi(f#) = [1, 2, 3] pi(s) = [1] pi(*) = 2 pi(half) = 1 pi(|0|) = [] pi(+) = [1] 2. lexicographic path order with precedence: precedence: + > f# > s > half > |0| > * argument filter: pi(f#) = [1, 2] pi(s) = [1] pi(*) = 2 pi(half) = [] pi(|0|) = [] pi(+) = 1 3. lexicographic path order with precedence: precedence: + > |0| > half > * > s > f# argument filter: pi(f#) = [1, 2] pi(s) = 1 pi(*) = 2 pi(half) = [] pi(|0|) = [] pi(+) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: *#(x,s(y)) -> *#(x,y) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > *# argument filter: pi(*#) = [2] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > *# argument filter: pi(*#) = [2] pi(s) = [1] 3. lexicographic path order with precedence: precedence: s > *# argument filter: pi(*#) = 2 pi(s) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: odd#(s(s(x))) -> odd#(x) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > odd# argument filter: pi(odd#) = [1] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > odd# argument filter: pi(odd#) = [1] pi(s) = [1] 3. lexicographic path order with precedence: precedence: s > odd# argument filter: pi(odd#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: half#(s(s(x))) -> half#(x) and R consists of: r1: -(x,|0|()) -> x r2: -(s(x),s(y)) -> -(x,y) r3: *(x,|0|()) -> |0|() r4: *(x,s(y)) -> +(*(x,y),x) r5: if(true(),x,y) -> x r6: if(false(),x,y) -> y r7: odd(|0|()) -> false() r8: odd(s(|0|())) -> true() r9: odd(s(s(x))) -> odd(x) r10: half(|0|()) -> |0|() r11: half(s(|0|())) -> |0|() r12: half(s(s(x))) -> s(half(x)) r13: if(true(),x,y) -> true() r14: if(false(),x,y) -> false() r15: pow(x,y) -> f(x,y,s(|0|())) r16: f(x,|0|(),z) -> z r17: f(x,s(y),z) -> if(odd(s(y)),f(x,y,*(x,z)),f(*(x,x),half(s(y)),z)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > half# argument filter: pi(half#) = [1] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > half# argument filter: pi(half#) = [1] pi(s) = [1] 3. lexicographic path order with precedence: precedence: s > half# argument filter: pi(half#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17 We remove them from the problem. Then no dependency pair remains.