YES We show the termination of the TRS R: if(if(x,y,z),u,v) -> if(x,if(y,u,v),if(z,u,v)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u,v) -> if#(x,if(y,u,v),if(z,u,v)) p2: if#(if(x,y,z),u,v) -> if#(y,u,v) p3: if#(if(x,y,z),u,v) -> if#(z,u,v) and R consists of: r1: if(if(x,y,z),u,v) -> if(x,if(y,u,v),if(z,u,v)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if#(if(x,y,z),u,v) -> if#(x,if(y,u,v),if(z,u,v)) p2: if#(if(x,y,z),u,v) -> if#(z,u,v) p3: if#(if(x,y,z),u,v) -> if#(y,u,v) and R consists of: r1: if(if(x,y,z),u,v) -> if(x,if(y,u,v),if(z,u,v)) The set of usable rules consists of r1 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: if# > if argument filter: pi(if#) = [1, 2, 3] pi(if) = [1, 2, 3] 2. lexicographic path order with precedence: precedence: if# > if argument filter: pi(if#) = [1, 2, 3] pi(if) = 2 3. lexicographic path order with precedence: precedence: if > if# argument filter: pi(if#) = 1 pi(if) = 2 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains.