YES We show the termination of the TRS R: app(app(plus(),|0|()),y) -> y app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) app(app(map(),f),nil()) -> nil() app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) inc() -> app(map(),app(plus(),app(s(),|0|()))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(s(),app(app(plus(),x),y)) p2: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) p3: app#(app(plus(),app(s(),x)),y) -> app#(plus(),x) p4: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(f,x)),app(app(map(),f),xs)) p5: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(cons(),app(f,x)) p6: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p7: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) p8: inc#() -> app#(map(),app(plus(),app(s(),|0|()))) p9: inc#() -> app#(plus(),app(s(),|0|())) p10: inc#() -> app#(s(),|0|()) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(map(),f),nil()) -> nil() r4: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r5: inc() -> app(map(),app(plus(),app(s(),|0|()))) The estimated dependency graph contains the following SCCs: {p6, p7} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(f,x) p2: app#(app(map(),f),app(app(cons(),x),xs)) -> app#(app(map(),f),xs) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(map(),f),nil()) -> nil() r4: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r5: inc() -> app(map(),app(plus(),app(s(),|0|()))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: map > app# > app > cons argument filter: pi(app#) = [1, 2] pi(app) = [1, 2] pi(map) = [] pi(cons) = [] 2. lexicographic path order with precedence: precedence: app# > map > app > cons argument filter: pi(app#) = 1 pi(app) = [1, 2] pi(map) = [] pi(cons) = [] 3. lexicographic path order with precedence: precedence: app# > map > app > cons argument filter: pi(app#) = 1 pi(app) = [1, 2] pi(map) = [] pi(cons) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(app(plus(),app(s(),x)),y) -> app#(app(plus(),x),y) and R consists of: r1: app(app(plus(),|0|()),y) -> y r2: app(app(plus(),app(s(),x)),y) -> app(s(),app(app(plus(),x),y)) r3: app(app(map(),f),nil()) -> nil() r4: app(app(map(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(f,x)),app(app(map(),f),xs)) r5: inc() -> app(map(),app(plus(),app(s(),|0|()))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: app > plus > app# > s argument filter: pi(app#) = [1, 2] pi(app) = [1, 2] pi(plus) = [] pi(s) = [] 2. lexicographic path order with precedence: precedence: plus > app > app# > s argument filter: pi(app#) = [1, 2] pi(app) = [1, 2] pi(plus) = [] pi(s) = [] 3. lexicographic path order with precedence: precedence: plus > app > app# > s argument filter: pi(app#) = [1, 2] pi(app) = [1, 2] pi(plus) = [] pi(s) = [] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5 We remove them from the problem. Then no dependency pair remains.