YES

We show the termination of the TRS R:

  minus(x,|0|()) -> x
  minus(s(x),s(y)) -> minus(x,y)
  quot(|0|(),s(y)) -> |0|()
  quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
  plus(|0|(),y) -> y
  plus(s(x),y) -> s(plus(x,y))
  minus(minus(x,y),z) -> minus(x,plus(y,z))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)
p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))
p3: quot#(s(x),s(y)) -> minus#(x,y)
p4: plus#(s(x),y) -> plus#(x,y)
p5: minus#(minus(x,y),z) -> minus#(x,plus(y,z))
p6: minus#(minus(x,y),z) -> plus#(y,z)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The estimated dependency graph contains the following SCCs:

  {p2}
  {p1, p5}
  {p4}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The set of usable rules consists of

  r1, r2, r5, r6, r7

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        |0| > minus > plus > s > quot#
      
      argument filter:
    
        pi(quot#) = [1, 2]
        pi(s) = 1
        pi(minus) = 1
        pi(plus) = [1, 2]
        pi(|0|) = []
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        |0| > plus > minus > quot# > s
      
      argument filter:
    
        pi(quot#) = [1]
        pi(s) = [1]
        pi(minus) = 1
        pi(plus) = 1
        pi(|0|) = []
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        |0| > plus > minus > s > quot#
      
      argument filter:
    
        pi(quot#) = 1
        pi(s) = [1]
        pi(minus) = 1
        pi(plus) = [1]
        pi(|0|) = []
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)
p2: minus#(minus(x,y),z) -> minus#(x,plus(y,z))

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The set of usable rules consists of

  r5, r6

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        |0| > minus > plus > minus# > s
      
      argument filter:
    
        pi(minus#) = [1]
        pi(s) = 1
        pi(minus) = 1
        pi(plus) = [2]
        pi(|0|) = []
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        |0| > plus > minus# > minus > s
      
      argument filter:
    
        pi(minus#) = [1]
        pi(s) = 1
        pi(minus) = 1
        pi(plus) = [2]
        pi(|0|) = []
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        |0| > plus > minus# > minus > s
      
      argument filter:
    
        pi(minus#) = [1]
        pi(s) = 1
        pi(minus) = [1]
        pi(plus) = 2
        pi(|0|) = []
    

The next rules are strictly ordered:

  p2

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The estimated dependency graph contains the following SCCs:

  {p1}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: minus#(s(x),s(y)) -> minus#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        s > minus#
      
      argument filter:
    
        pi(minus#) = 1
        pi(s) = [1]
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        s > minus#
      
      argument filter:
    
        pi(minus#) = 1
        pi(s) = 1
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        s > minus#
      
      argument filter:
    
        pi(minus#) = 1
        pi(s) = [1]
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: plus#(s(x),y) -> plus#(x,y)

and R consists of:

r1: minus(x,|0|()) -> x
r2: minus(s(x),s(y)) -> minus(x,y)
r3: quot(|0|(),s(y)) -> |0|()
r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
r5: plus(|0|(),y) -> y
r6: plus(s(x),y) -> s(plus(x,y))
r7: minus(minus(x,y),z) -> minus(x,plus(y,z))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        plus# > s
      
      argument filter:
    
        pi(plus#) = [1, 2]
        pi(s) = 1
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        s > plus#
      
      argument filter:
    
        pi(plus#) = 1
        pi(s) = 1
    
    3. lexicographic path order with precedence:
    
      precedence:
      
        s > plus#
      
      argument filter:
    
        pi(plus#) = [1]
        pi(s) = [1]
    

The next rules are strictly ordered:

  p1

We remove them from the problem.  Then no dependency pair remains.