YES We show the termination of the TRS R: rev(nil()) -> nil() rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) rev1(|0|(),nil()) -> |0|() rev1(s(x),nil()) -> s(x) rev1(x,cons(y,l)) -> rev1(y,l) rev2(x,nil()) -> nil() rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: rev#(cons(x,l)) -> rev1#(x,l) p2: rev#(cons(x,l)) -> rev2#(x,l) p3: rev1#(x,cons(y,l)) -> rev1#(y,l) p4: rev2#(x,cons(y,l)) -> rev#(cons(x,rev2(y,l))) p5: rev2#(x,cons(y,l)) -> rev2#(y,l) and R consists of: r1: rev(nil()) -> nil() r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) r3: rev1(|0|(),nil()) -> |0|() r4: rev1(s(x),nil()) -> s(x) r5: rev1(x,cons(y,l)) -> rev1(y,l) r6: rev2(x,nil()) -> nil() r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) The estimated dependency graph contains the following SCCs: {p2, p4, p5} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev2#(x,cons(y,l)) -> rev#(cons(x,rev2(y,l))) p2: rev#(cons(x,l)) -> rev2#(x,l) p3: rev2#(x,cons(y,l)) -> rev2#(y,l) and R consists of: r1: rev(nil()) -> nil() r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) r3: rev1(|0|(),nil()) -> |0|() r4: rev1(s(x),nil()) -> s(x) r5: rev1(x,cons(y,l)) -> rev1(y,l) r6: rev2(x,nil()) -> nil() r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) The set of usable rules consists of r2, r3, r4, r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: rev1 > rev > nil > s > |0| > rev2 > cons > rev2# > rev# argument filter: pi(rev2#) = 2 pi(cons) = [2] pi(rev#) = 1 pi(rev2) = 2 pi(rev1) = 2 pi(|0|) = [] pi(nil) = [] pi(s) = [] pi(rev) = 1 2. lexicographic path order with precedence: precedence: rev1 > rev > s > rev# > |0| > nil > rev2 > cons > rev2# argument filter: pi(rev2#) = 2 pi(cons) = 2 pi(rev#) = 1 pi(rev2) = 2 pi(rev1) = 2 pi(|0|) = [] pi(nil) = [] pi(s) = [] pi(rev) = 1 3. lexicographic path order with precedence: precedence: rev1 > rev > s > |0| > nil > rev2 > cons > rev2# > rev# argument filter: pi(rev2#) = [] pi(cons) = 2 pi(rev#) = [] pi(rev2) = 2 pi(rev1) = [2] pi(|0|) = [] pi(nil) = [] pi(s) = [] pi(rev) = 1 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: rev1#(x,cons(y,l)) -> rev1#(y,l) and R consists of: r1: rev(nil()) -> nil() r2: rev(cons(x,l)) -> cons(rev1(x,l),rev2(x,l)) r3: rev1(|0|(),nil()) -> |0|() r4: rev1(s(x),nil()) -> s(x) r5: rev1(x,cons(y,l)) -> rev1(y,l) r6: rev2(x,nil()) -> nil() r7: rev2(x,cons(y,l)) -> rev(cons(x,rev2(y,l))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > rev1# argument filter: pi(rev1#) = 2 pi(cons) = [1, 2] 2. lexicographic path order with precedence: precedence: cons > rev1# argument filter: pi(rev1#) = 2 pi(cons) = 1 3. lexicographic path order with precedence: precedence: cons > rev1# argument filter: pi(rev1#) = [] pi(cons) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.