YES We show the termination of the TRS R: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) active(__(X,nil())) -> mark(X) active(__(nil(),X)) -> mark(X) active(U11(tt())) -> mark(tt()) active(U21(tt(),V2)) -> mark(U22(isList(V2))) active(U22(tt())) -> mark(tt()) active(U31(tt())) -> mark(tt()) active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) active(U42(tt())) -> mark(tt()) active(U51(tt(),V2)) -> mark(U52(isList(V2))) active(U52(tt())) -> mark(tt()) active(U61(tt())) -> mark(tt()) active(U71(tt(),P)) -> mark(U72(isPal(P))) active(U72(tt())) -> mark(tt()) active(U81(tt())) -> mark(tt()) active(isList(V)) -> mark(U11(isNeList(V))) active(isList(nil())) -> mark(tt()) active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) active(isNeList(V)) -> mark(U31(isQid(V))) active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) active(isNePal(V)) -> mark(U61(isQid(V))) active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) active(isPal(V)) -> mark(U81(isNePal(V))) active(isPal(nil())) -> mark(tt()) active(isQid(a())) -> mark(tt()) active(isQid(e())) -> mark(tt()) active(isQid(i())) -> mark(tt()) active(isQid(o())) -> mark(tt()) active(isQid(u())) -> mark(tt()) mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) mark(nil()) -> active(nil()) mark(U11(X)) -> active(U11(mark(X))) mark(tt()) -> active(tt()) mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) mark(U22(X)) -> active(U22(mark(X))) mark(isList(X)) -> active(isList(X)) mark(U31(X)) -> active(U31(mark(X))) mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) mark(U42(X)) -> active(U42(mark(X))) mark(isNeList(X)) -> active(isNeList(X)) mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) mark(U52(X)) -> active(U52(mark(X))) mark(U61(X)) -> active(U61(mark(X))) mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) mark(U72(X)) -> active(U72(mark(X))) mark(isPal(X)) -> active(isPal(X)) mark(U81(X)) -> active(U81(mark(X))) mark(isQid(X)) -> active(isQid(X)) mark(isNePal(X)) -> active(isNePal(X)) mark(a()) -> active(a()) mark(e()) -> active(e()) mark(i()) -> active(i()) mark(o()) -> active(o()) mark(u()) -> active(u()) __(mark(X1),X2) -> __(X1,X2) __(X1,mark(X2)) -> __(X1,X2) __(active(X1),X2) -> __(X1,X2) __(X1,active(X2)) -> __(X1,X2) U11(mark(X)) -> U11(X) U11(active(X)) -> U11(X) U21(mark(X1),X2) -> U21(X1,X2) U21(X1,mark(X2)) -> U21(X1,X2) U21(active(X1),X2) -> U21(X1,X2) U21(X1,active(X2)) -> U21(X1,X2) U22(mark(X)) -> U22(X) U22(active(X)) -> U22(X) isList(mark(X)) -> isList(X) isList(active(X)) -> isList(X) U31(mark(X)) -> U31(X) U31(active(X)) -> U31(X) U41(mark(X1),X2) -> U41(X1,X2) U41(X1,mark(X2)) -> U41(X1,X2) U41(active(X1),X2) -> U41(X1,X2) U41(X1,active(X2)) -> U41(X1,X2) U42(mark(X)) -> U42(X) U42(active(X)) -> U42(X) isNeList(mark(X)) -> isNeList(X) isNeList(active(X)) -> isNeList(X) U51(mark(X1),X2) -> U51(X1,X2) U51(X1,mark(X2)) -> U51(X1,X2) U51(active(X1),X2) -> U51(X1,X2) U51(X1,active(X2)) -> U51(X1,X2) U52(mark(X)) -> U52(X) U52(active(X)) -> U52(X) U61(mark(X)) -> U61(X) U61(active(X)) -> U61(X) U71(mark(X1),X2) -> U71(X1,X2) U71(X1,mark(X2)) -> U71(X1,X2) U71(active(X1),X2) -> U71(X1,X2) U71(X1,active(X2)) -> U71(X1,X2) U72(mark(X)) -> U72(X) U72(active(X)) -> U72(X) isPal(mark(X)) -> isPal(X) isPal(active(X)) -> isPal(X) U81(mark(X)) -> U81(X) U81(active(X)) -> U81(X) isQid(mark(X)) -> isQid(X) isQid(active(X)) -> isQid(X) isNePal(mark(X)) -> isNePal(X) isNePal(active(X)) -> isNePal(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: active#(__(__(X,Y),Z)) -> __#(X,__(Y,Z)) p3: active#(__(__(X,Y),Z)) -> __#(Y,Z) p4: active#(__(X,nil())) -> mark#(X) p5: active#(__(nil(),X)) -> mark#(X) p6: active#(U11(tt())) -> mark#(tt()) p7: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p8: active#(U21(tt(),V2)) -> U22#(isList(V2)) p9: active#(U21(tt(),V2)) -> isList#(V2) p10: active#(U22(tt())) -> mark#(tt()) p11: active#(U31(tt())) -> mark#(tt()) p12: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p13: active#(U41(tt(),V2)) -> U42#(isNeList(V2)) p14: active#(U41(tt(),V2)) -> isNeList#(V2) p15: active#(U42(tt())) -> mark#(tt()) p16: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p17: active#(U51(tt(),V2)) -> U52#(isList(V2)) p18: active#(U51(tt(),V2)) -> isList#(V2) p19: active#(U52(tt())) -> mark#(tt()) p20: active#(U61(tt())) -> mark#(tt()) p21: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p22: active#(U71(tt(),P)) -> U72#(isPal(P)) p23: active#(U71(tt(),P)) -> isPal#(P) p24: active#(U72(tt())) -> mark#(tt()) p25: active#(U81(tt())) -> mark#(tt()) p26: active#(isList(V)) -> mark#(U11(isNeList(V))) p27: active#(isList(V)) -> U11#(isNeList(V)) p28: active#(isList(V)) -> isNeList#(V) p29: active#(isList(nil())) -> mark#(tt()) p30: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p31: active#(isList(__(V1,V2))) -> U21#(isList(V1),V2) p32: active#(isList(__(V1,V2))) -> isList#(V1) p33: active#(isNeList(V)) -> mark#(U31(isQid(V))) p34: active#(isNeList(V)) -> U31#(isQid(V)) p35: active#(isNeList(V)) -> isQid#(V) p36: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p37: active#(isNeList(__(V1,V2))) -> U41#(isList(V1),V2) p38: active#(isNeList(__(V1,V2))) -> isList#(V1) p39: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p40: active#(isNeList(__(V1,V2))) -> U51#(isNeList(V1),V2) p41: active#(isNeList(__(V1,V2))) -> isNeList#(V1) p42: active#(isNePal(V)) -> mark#(U61(isQid(V))) p43: active#(isNePal(V)) -> U61#(isQid(V)) p44: active#(isNePal(V)) -> isQid#(V) p45: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p46: active#(isNePal(__(I,__(P,I)))) -> U71#(isQid(I),P) p47: active#(isNePal(__(I,__(P,I)))) -> isQid#(I) p48: active#(isPal(V)) -> mark#(U81(isNePal(V))) p49: active#(isPal(V)) -> U81#(isNePal(V)) p50: active#(isPal(V)) -> isNePal#(V) p51: active#(isPal(nil())) -> mark#(tt()) p52: active#(isQid(a())) -> mark#(tt()) p53: active#(isQid(e())) -> mark#(tt()) p54: active#(isQid(i())) -> mark#(tt()) p55: active#(isQid(o())) -> mark#(tt()) p56: active#(isQid(u())) -> mark#(tt()) p57: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p58: mark#(__(X1,X2)) -> __#(mark(X1),mark(X2)) p59: mark#(__(X1,X2)) -> mark#(X1) p60: mark#(__(X1,X2)) -> mark#(X2) p61: mark#(nil()) -> active#(nil()) p62: mark#(U11(X)) -> active#(U11(mark(X))) p63: mark#(U11(X)) -> U11#(mark(X)) p64: mark#(U11(X)) -> mark#(X) p65: mark#(tt()) -> active#(tt()) p66: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p67: mark#(U21(X1,X2)) -> U21#(mark(X1),X2) p68: mark#(U21(X1,X2)) -> mark#(X1) p69: mark#(U22(X)) -> active#(U22(mark(X))) p70: mark#(U22(X)) -> U22#(mark(X)) p71: mark#(U22(X)) -> mark#(X) p72: mark#(isList(X)) -> active#(isList(X)) p73: mark#(U31(X)) -> active#(U31(mark(X))) p74: mark#(U31(X)) -> U31#(mark(X)) p75: mark#(U31(X)) -> mark#(X) p76: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p77: mark#(U41(X1,X2)) -> U41#(mark(X1),X2) p78: mark#(U41(X1,X2)) -> mark#(X1) p79: mark#(U42(X)) -> active#(U42(mark(X))) p80: mark#(U42(X)) -> U42#(mark(X)) p81: mark#(U42(X)) -> mark#(X) p82: mark#(isNeList(X)) -> active#(isNeList(X)) p83: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p84: mark#(U51(X1,X2)) -> U51#(mark(X1),X2) p85: mark#(U51(X1,X2)) -> mark#(X1) p86: mark#(U52(X)) -> active#(U52(mark(X))) p87: mark#(U52(X)) -> U52#(mark(X)) p88: mark#(U52(X)) -> mark#(X) p89: mark#(U61(X)) -> active#(U61(mark(X))) p90: mark#(U61(X)) -> U61#(mark(X)) p91: mark#(U61(X)) -> mark#(X) p92: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p93: mark#(U71(X1,X2)) -> U71#(mark(X1),X2) p94: mark#(U71(X1,X2)) -> mark#(X1) p95: mark#(U72(X)) -> active#(U72(mark(X))) p96: mark#(U72(X)) -> U72#(mark(X)) p97: mark#(U72(X)) -> mark#(X) p98: mark#(isPal(X)) -> active#(isPal(X)) p99: mark#(U81(X)) -> active#(U81(mark(X))) p100: mark#(U81(X)) -> U81#(mark(X)) p101: mark#(U81(X)) -> mark#(X) p102: mark#(isQid(X)) -> active#(isQid(X)) p103: mark#(isNePal(X)) -> active#(isNePal(X)) p104: mark#(a()) -> active#(a()) p105: mark#(e()) -> active#(e()) p106: mark#(i()) -> active#(i()) p107: mark#(o()) -> active#(o()) p108: mark#(u()) -> active#(u()) p109: __#(mark(X1),X2) -> __#(X1,X2) p110: __#(X1,mark(X2)) -> __#(X1,X2) p111: __#(active(X1),X2) -> __#(X1,X2) p112: __#(X1,active(X2)) -> __#(X1,X2) p113: U11#(mark(X)) -> U11#(X) p114: U11#(active(X)) -> U11#(X) p115: U21#(mark(X1),X2) -> U21#(X1,X2) p116: U21#(X1,mark(X2)) -> U21#(X1,X2) p117: U21#(active(X1),X2) -> U21#(X1,X2) p118: U21#(X1,active(X2)) -> U21#(X1,X2) p119: U22#(mark(X)) -> U22#(X) p120: U22#(active(X)) -> U22#(X) p121: isList#(mark(X)) -> isList#(X) p122: isList#(active(X)) -> isList#(X) p123: U31#(mark(X)) -> U31#(X) p124: U31#(active(X)) -> U31#(X) p125: U41#(mark(X1),X2) -> U41#(X1,X2) p126: U41#(X1,mark(X2)) -> U41#(X1,X2) p127: U41#(active(X1),X2) -> U41#(X1,X2) p128: U41#(X1,active(X2)) -> U41#(X1,X2) p129: U42#(mark(X)) -> U42#(X) p130: U42#(active(X)) -> U42#(X) p131: isNeList#(mark(X)) -> isNeList#(X) p132: isNeList#(active(X)) -> isNeList#(X) p133: U51#(mark(X1),X2) -> U51#(X1,X2) p134: U51#(X1,mark(X2)) -> U51#(X1,X2) p135: U51#(active(X1),X2) -> U51#(X1,X2) p136: U51#(X1,active(X2)) -> U51#(X1,X2) p137: U52#(mark(X)) -> U52#(X) p138: U52#(active(X)) -> U52#(X) p139: U61#(mark(X)) -> U61#(X) p140: U61#(active(X)) -> U61#(X) p141: U71#(mark(X1),X2) -> U71#(X1,X2) p142: U71#(X1,mark(X2)) -> U71#(X1,X2) p143: U71#(active(X1),X2) -> U71#(X1,X2) p144: U71#(X1,active(X2)) -> U71#(X1,X2) p145: U72#(mark(X)) -> U72#(X) p146: U72#(active(X)) -> U72#(X) p147: isPal#(mark(X)) -> isPal#(X) p148: isPal#(active(X)) -> isPal#(X) p149: U81#(mark(X)) -> U81#(X) p150: U81#(active(X)) -> U81#(X) p151: isQid#(mark(X)) -> isQid#(X) p152: isQid#(active(X)) -> isQid#(X) p153: isNePal#(mark(X)) -> isNePal#(X) p154: isNePal#(active(X)) -> isNePal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p4, p5, p7, p12, p16, p21, p26, p30, p33, p36, p39, p42, p45, p48, p57, p59, p60, p62, p64, p66, p68, p69, p71, p72, p73, p75, p76, p78, p79, p81, p82, p83, p85, p86, p88, p89, p91, p92, p94, p95, p97, p98, p99, p101, p102, p103} {p109, p110, p111, p112} {p119, p120} {p121, p122} {p129, p130} {p131, p132} {p137, p138} {p145, p146} {p147, p148} {p113, p114} {p115, p116, p117, p118} {p123, p124} {p151, p152} {p125, p126, p127, p128} {p133, p134, p135, p136} {p139, p140} {p141, p142, p143, p144} {p149, p150} {p153, p154} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(__(__(X,Y),Z)) -> mark#(__(X,__(Y,Z))) p2: mark#(isNePal(X)) -> active#(isNePal(X)) p3: active#(isPal(V)) -> mark#(U81(isNePal(V))) p4: mark#(isQid(X)) -> active#(isQid(X)) p5: active#(isNePal(__(I,__(P,I)))) -> mark#(U71(isQid(I),P)) p6: mark#(U81(X)) -> mark#(X) p7: mark#(U81(X)) -> active#(U81(mark(X))) p8: active#(isNePal(V)) -> mark#(U61(isQid(V))) p9: mark#(isPal(X)) -> active#(isPal(X)) p10: active#(isNeList(__(V1,V2))) -> mark#(U51(isNeList(V1),V2)) p11: mark#(U72(X)) -> mark#(X) p12: mark#(U72(X)) -> active#(U72(mark(X))) p13: active#(isNeList(__(V1,V2))) -> mark#(U41(isList(V1),V2)) p14: mark#(U71(X1,X2)) -> mark#(X1) p15: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p16: active#(isNeList(V)) -> mark#(U31(isQid(V))) p17: mark#(U61(X)) -> mark#(X) p18: mark#(U61(X)) -> active#(U61(mark(X))) p19: active#(isList(__(V1,V2))) -> mark#(U21(isList(V1),V2)) p20: mark#(U52(X)) -> mark#(X) p21: mark#(U52(X)) -> active#(U52(mark(X))) p22: active#(isList(V)) -> mark#(U11(isNeList(V))) p23: mark#(U51(X1,X2)) -> mark#(X1) p24: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p25: active#(U71(tt(),P)) -> mark#(U72(isPal(P))) p26: mark#(isNeList(X)) -> active#(isNeList(X)) p27: active#(U51(tt(),V2)) -> mark#(U52(isList(V2))) p28: mark#(U42(X)) -> mark#(X) p29: mark#(U42(X)) -> active#(U42(mark(X))) p30: active#(U41(tt(),V2)) -> mark#(U42(isNeList(V2))) p31: mark#(U41(X1,X2)) -> mark#(X1) p32: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p33: active#(U21(tt(),V2)) -> mark#(U22(isList(V2))) p34: mark#(U31(X)) -> mark#(X) p35: mark#(U31(X)) -> active#(U31(mark(X))) p36: active#(__(nil(),X)) -> mark#(X) p37: mark#(isList(X)) -> active#(isList(X)) p38: active#(__(X,nil())) -> mark#(X) p39: mark#(U22(X)) -> mark#(X) p40: mark#(U22(X)) -> active#(U22(mark(X))) p41: mark#(U21(X1,X2)) -> mark#(X1) p42: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p43: mark#(U11(X)) -> mark#(X) p44: mark#(U11(X)) -> active#(U11(mark(X))) p45: mark#(__(X1,X2)) -> mark#(X2) p46: mark#(__(X1,X2)) -> mark#(X1) p47: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: mark# > U11 > U52 > __ > U21 > active > U41 > U71 > U51 > U72 > isQid > U81 > active# > isList > U61 > U31 > isPal > u > o > mark > isNeList > i > e > a > nil > U22 > U42 > tt > isNePal argument filter: pi(active#) = 1 pi(__) = [1, 2] pi(mark#) = 1 pi(isNePal) = 1 pi(isPal) = 1 pi(U81) = 1 pi(isQid) = 1 pi(U71) = [1, 2] pi(mark) = 1 pi(U61) = 1 pi(isNeList) = 1 pi(U51) = [1, 2] pi(U72) = [1] pi(U41) = [1, 2] pi(isList) = [1] pi(U31) = 1 pi(U21) = [1, 2] pi(U52) = 1 pi(U11) = 1 pi(tt) = [] pi(U42) = [1] pi(U22) = [1] pi(nil) = [] pi(active) = 1 pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] 2. lexicographic path order with precedence: precedence: U51 > U81 > tt > u > o > i > a > nil > U42 > U41 > isNeList > U11 > U31 > isPal > e > active > mark > U52 > U22 > U21 > isList > U61 > U71 > active# > mark# > U72 > isQid > isNePal > __ argument filter: pi(active#) = 1 pi(__) = 2 pi(mark#) = 1 pi(isNePal) = [1] pi(isPal) = [1] pi(U81) = 1 pi(isQid) = 1 pi(U71) = 1 pi(mark) = 1 pi(U61) = 1 pi(isNeList) = 1 pi(U51) = 1 pi(U72) = [1] pi(U41) = 2 pi(isList) = [] pi(U31) = 1 pi(U21) = 2 pi(U52) = [1] pi(U11) = 1 pi(tt) = [] pi(U42) = [] pi(U22) = [1] pi(nil) = [] pi(active) = 1 pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1, p3, p5, p8, p10, p11, p13, p14, p19, p20, p22, p23, p25, p27, p28, p30, p31, p33, p36, p38, p39, p41, p45, p46 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(isNePal(X)) -> active#(isNePal(X)) p2: mark#(isQid(X)) -> active#(isQid(X)) p3: mark#(U81(X)) -> mark#(X) p4: mark#(U81(X)) -> active#(U81(mark(X))) p5: mark#(isPal(X)) -> active#(isPal(X)) p6: mark#(U72(X)) -> active#(U72(mark(X))) p7: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p8: active#(isNeList(V)) -> mark#(U31(isQid(V))) p9: mark#(U61(X)) -> mark#(X) p10: mark#(U61(X)) -> active#(U61(mark(X))) p11: mark#(U52(X)) -> active#(U52(mark(X))) p12: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p13: mark#(isNeList(X)) -> active#(isNeList(X)) p14: mark#(U42(X)) -> active#(U42(mark(X))) p15: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p16: mark#(U31(X)) -> mark#(X) p17: mark#(U31(X)) -> active#(U31(mark(X))) p18: mark#(isList(X)) -> active#(isList(X)) p19: mark#(U22(X)) -> active#(U22(mark(X))) p20: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p21: mark#(U11(X)) -> mark#(X) p22: mark#(U11(X)) -> active#(U11(mark(X))) p23: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(isNePal(X)) -> active#(isNePal(X)) p2: active#(isNeList(V)) -> mark#(U31(isQid(V))) p3: mark#(__(X1,X2)) -> active#(__(mark(X1),mark(X2))) p4: mark#(U11(X)) -> active#(U11(mark(X))) p5: mark#(U11(X)) -> mark#(X) p6: mark#(U21(X1,X2)) -> active#(U21(mark(X1),X2)) p7: mark#(U22(X)) -> active#(U22(mark(X))) p8: mark#(isList(X)) -> active#(isList(X)) p9: mark#(U31(X)) -> active#(U31(mark(X))) p10: mark#(U31(X)) -> mark#(X) p11: mark#(U41(X1,X2)) -> active#(U41(mark(X1),X2)) p12: mark#(U42(X)) -> active#(U42(mark(X))) p13: mark#(isNeList(X)) -> active#(isNeList(X)) p14: mark#(U51(X1,X2)) -> active#(U51(mark(X1),X2)) p15: mark#(U52(X)) -> active#(U52(mark(X))) p16: mark#(U61(X)) -> active#(U61(mark(X))) p17: mark#(U61(X)) -> mark#(X) p18: mark#(U71(X1,X2)) -> active#(U71(mark(X1),X2)) p19: mark#(U72(X)) -> active#(U72(mark(X))) p20: mark#(isPal(X)) -> active#(isPal(X)) p21: mark#(U81(X)) -> active#(U81(mark(X))) p22: mark#(U81(X)) -> mark#(X) p23: mark#(isQid(X)) -> active#(isQid(X)) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: __ > u > o > U81 > U21 > U71 > isPal > isList > isNeList > isNePal > isQid > U51 > U52 > U41 > U42 > U22 > mark > tt > active > i > e > a > nil > U72 > active# > mark# > U61 > U11 > U31 argument filter: pi(mark#) = [1] pi(isNePal) = [1] pi(active#) = 1 pi(isNeList) = [1] pi(U31) = [1] pi(isQid) = [1] pi(__) = [1, 2] pi(mark) = 1 pi(U11) = 1 pi(U21) = [1, 2] pi(U22) = [] pi(isList) = [1] pi(U41) = [1] pi(U42) = [] pi(U51) = [2] pi(U52) = [] pi(U61) = [1] pi(U71) = [1, 2] pi(U72) = 1 pi(isPal) = [1] pi(U81) = 1 pi(active) = 1 pi(nil) = [] pi(tt) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] 2. lexicographic path order with precedence: precedence: mark > o > U42 > active > e > a > nil > U81 > isPal > U72 > U71 > U61 > u > U52 > isNeList > tt > i > active# > isList > U51 > U41 > U22 > U21 > U11 > isQid > __ > U31 > isNePal > mark# argument filter: pi(mark#) = 1 pi(isNePal) = [1] pi(active#) = 1 pi(isNeList) = 1 pi(U31) = 1 pi(isQid) = [1] pi(__) = [] pi(mark) = 1 pi(U11) = 1 pi(U21) = 1 pi(U22) = [] pi(isList) = [1] pi(U41) = 1 pi(U42) = [] pi(U51) = [2] pi(U52) = [] pi(U61) = 1 pi(U71) = 1 pi(U72) = [] pi(isPal) = [1] pi(U81) = [1] pi(active) = 1 pi(nil) = [] pi(tt) = [] pi(a) = [] pi(e) = [] pi(i) = [] pi(o) = [] pi(u) = [] The next rules are strictly ordered: p1, p2, p3, p4, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X)) -> mark#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(U11(X)) -> mark#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U11 > mark# argument filter: pi(mark#) = [1] pi(U11) = 1 2. lexicographic path order with precedence: precedence: U11 > mark# argument filter: pi(mark#) = [1] pi(U11) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(X1,active(X2)) -> __#(X1,X2) p3: __#(active(X1),X2) -> __#(X1,X2) p4: __#(X1,mark(X2)) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: __# > active > mark argument filter: pi(__#) = 2 pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: __# > active > mark argument filter: pi(__#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(active(X1),X2) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: __#(mark(X1),X2) -> __#(X1,X2) p2: __#(active(X1),X2) -> __#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: __# > active > mark argument filter: pi(__#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: __# > active > mark argument filter: pi(__#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U22#(mark(X)) -> U22#(X) p2: U22#(active(X)) -> U22#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U22# > active > mark argument filter: pi(U22#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U22# > active > mark argument filter: pi(U22#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isList#(mark(X)) -> isList#(X) p2: isList#(active(X)) -> isList#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: isList# > active > mark argument filter: pi(isList#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: isList# > active > mark argument filter: pi(isList#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U42#(mark(X)) -> U42#(X) p2: U42#(active(X)) -> U42#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U42# > active > mark argument filter: pi(U42#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U42# > active > mark argument filter: pi(U42#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNeList#(mark(X)) -> isNeList#(X) p2: isNeList#(active(X)) -> isNeList#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: isNeList# > active > mark argument filter: pi(isNeList#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: isNeList# > active > mark argument filter: pi(isNeList#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U52#(mark(X)) -> U52#(X) p2: U52#(active(X)) -> U52#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U52# > active > mark argument filter: pi(U52#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U52# > active > mark argument filter: pi(U52#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U72#(mark(X)) -> U72#(X) p2: U72#(active(X)) -> U72#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U72# > active > mark argument filter: pi(U72#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U72# > active > mark argument filter: pi(U72#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isPal#(mark(X)) -> isPal#(X) p2: isPal#(active(X)) -> isPal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: isPal# > active > mark argument filter: pi(isPal#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: isPal# > active > mark argument filter: pi(isPal#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U11#(mark(X)) -> U11#(X) p2: U11#(active(X)) -> U11#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U11# > active > mark argument filter: pi(U11#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U11# > active > mark argument filter: pi(U11#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(X1,active(X2)) -> U21#(X1,X2) p3: U21#(active(X1),X2) -> U21#(X1,X2) p4: U21#(X1,mark(X2)) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U21# > active > mark argument filter: pi(U21#) = 2 pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: U21# > active > mark argument filter: pi(U21#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(active(X1),X2) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U21#(mark(X1),X2) -> U21#(X1,X2) p2: U21#(active(X1),X2) -> U21#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U21# > active > mark argument filter: pi(U21#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U21# > active > mark argument filter: pi(U21#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U31#(mark(X)) -> U31#(X) p2: U31#(active(X)) -> U31#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U31# > active > mark argument filter: pi(U31#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U31# > active > mark argument filter: pi(U31#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isQid#(mark(X)) -> isQid#(X) p2: isQid#(active(X)) -> isQid#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: isQid# > active > mark argument filter: pi(isQid#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: isQid# > active > mark argument filter: pi(isQid#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(X1,active(X2)) -> U41#(X1,X2) p3: U41#(active(X1),X2) -> U41#(X1,X2) p4: U41#(X1,mark(X2)) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U41# > active > mark argument filter: pi(U41#) = 2 pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: U41# > active > mark argument filter: pi(U41#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(active(X1),X2) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U41#(mark(X1),X2) -> U41#(X1,X2) p2: U41#(active(X1),X2) -> U41#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U41# > active > mark argument filter: pi(U41#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U41# > active > mark argument filter: pi(U41#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(X1,active(X2)) -> U51#(X1,X2) p3: U51#(active(X1),X2) -> U51#(X1,X2) p4: U51#(X1,mark(X2)) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U51# > active > mark argument filter: pi(U51#) = 2 pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: U51# > active > mark argument filter: pi(U51#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(active(X1),X2) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U51#(mark(X1),X2) -> U51#(X1,X2) p2: U51#(active(X1),X2) -> U51#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U51# > active > mark argument filter: pi(U51#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U51# > active > mark argument filter: pi(U51#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U61#(mark(X)) -> U61#(X) p2: U61#(active(X)) -> U61#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U61# > active > mark argument filter: pi(U61#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U61# > active > mark argument filter: pi(U61#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(X1,active(X2)) -> U71#(X1,X2) p3: U71#(active(X1),X2) -> U71#(X1,X2) p4: U71#(X1,mark(X2)) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U71# > active > mark argument filter: pi(U71#) = 2 pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: U71# > active > mark argument filter: pi(U71#) = 2 pi(mark) = [1] pi(active) = 1 The next rules are strictly ordered: p2, p4 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(active(X1),X2) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U71#(mark(X1),X2) -> U71#(X1,X2) p2: U71#(active(X1),X2) -> U71#(X1,X2) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U71# > active > mark argument filter: pi(U71#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U71# > active > mark argument filter: pi(U71#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: U81#(mark(X)) -> U81#(X) p2: U81#(active(X)) -> U81#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: U81# > active > mark argument filter: pi(U81#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: U81# > active > mark argument filter: pi(U81#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: isNePal#(mark(X)) -> isNePal#(X) p2: isNePal#(active(X)) -> isNePal#(X) and R consists of: r1: active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z))) r2: active(__(X,nil())) -> mark(X) r3: active(__(nil(),X)) -> mark(X) r4: active(U11(tt())) -> mark(tt()) r5: active(U21(tt(),V2)) -> mark(U22(isList(V2))) r6: active(U22(tt())) -> mark(tt()) r7: active(U31(tt())) -> mark(tt()) r8: active(U41(tt(),V2)) -> mark(U42(isNeList(V2))) r9: active(U42(tt())) -> mark(tt()) r10: active(U51(tt(),V2)) -> mark(U52(isList(V2))) r11: active(U52(tt())) -> mark(tt()) r12: active(U61(tt())) -> mark(tt()) r13: active(U71(tt(),P)) -> mark(U72(isPal(P))) r14: active(U72(tt())) -> mark(tt()) r15: active(U81(tt())) -> mark(tt()) r16: active(isList(V)) -> mark(U11(isNeList(V))) r17: active(isList(nil())) -> mark(tt()) r18: active(isList(__(V1,V2))) -> mark(U21(isList(V1),V2)) r19: active(isNeList(V)) -> mark(U31(isQid(V))) r20: active(isNeList(__(V1,V2))) -> mark(U41(isList(V1),V2)) r21: active(isNeList(__(V1,V2))) -> mark(U51(isNeList(V1),V2)) r22: active(isNePal(V)) -> mark(U61(isQid(V))) r23: active(isNePal(__(I,__(P,I)))) -> mark(U71(isQid(I),P)) r24: active(isPal(V)) -> mark(U81(isNePal(V))) r25: active(isPal(nil())) -> mark(tt()) r26: active(isQid(a())) -> mark(tt()) r27: active(isQid(e())) -> mark(tt()) r28: active(isQid(i())) -> mark(tt()) r29: active(isQid(o())) -> mark(tt()) r30: active(isQid(u())) -> mark(tt()) r31: mark(__(X1,X2)) -> active(__(mark(X1),mark(X2))) r32: mark(nil()) -> active(nil()) r33: mark(U11(X)) -> active(U11(mark(X))) r34: mark(tt()) -> active(tt()) r35: mark(U21(X1,X2)) -> active(U21(mark(X1),X2)) r36: mark(U22(X)) -> active(U22(mark(X))) r37: mark(isList(X)) -> active(isList(X)) r38: mark(U31(X)) -> active(U31(mark(X))) r39: mark(U41(X1,X2)) -> active(U41(mark(X1),X2)) r40: mark(U42(X)) -> active(U42(mark(X))) r41: mark(isNeList(X)) -> active(isNeList(X)) r42: mark(U51(X1,X2)) -> active(U51(mark(X1),X2)) r43: mark(U52(X)) -> active(U52(mark(X))) r44: mark(U61(X)) -> active(U61(mark(X))) r45: mark(U71(X1,X2)) -> active(U71(mark(X1),X2)) r46: mark(U72(X)) -> active(U72(mark(X))) r47: mark(isPal(X)) -> active(isPal(X)) r48: mark(U81(X)) -> active(U81(mark(X))) r49: mark(isQid(X)) -> active(isQid(X)) r50: mark(isNePal(X)) -> active(isNePal(X)) r51: mark(a()) -> active(a()) r52: mark(e()) -> active(e()) r53: mark(i()) -> active(i()) r54: mark(o()) -> active(o()) r55: mark(u()) -> active(u()) r56: __(mark(X1),X2) -> __(X1,X2) r57: __(X1,mark(X2)) -> __(X1,X2) r58: __(active(X1),X2) -> __(X1,X2) r59: __(X1,active(X2)) -> __(X1,X2) r60: U11(mark(X)) -> U11(X) r61: U11(active(X)) -> U11(X) r62: U21(mark(X1),X2) -> U21(X1,X2) r63: U21(X1,mark(X2)) -> U21(X1,X2) r64: U21(active(X1),X2) -> U21(X1,X2) r65: U21(X1,active(X2)) -> U21(X1,X2) r66: U22(mark(X)) -> U22(X) r67: U22(active(X)) -> U22(X) r68: isList(mark(X)) -> isList(X) r69: isList(active(X)) -> isList(X) r70: U31(mark(X)) -> U31(X) r71: U31(active(X)) -> U31(X) r72: U41(mark(X1),X2) -> U41(X1,X2) r73: U41(X1,mark(X2)) -> U41(X1,X2) r74: U41(active(X1),X2) -> U41(X1,X2) r75: U41(X1,active(X2)) -> U41(X1,X2) r76: U42(mark(X)) -> U42(X) r77: U42(active(X)) -> U42(X) r78: isNeList(mark(X)) -> isNeList(X) r79: isNeList(active(X)) -> isNeList(X) r80: U51(mark(X1),X2) -> U51(X1,X2) r81: U51(X1,mark(X2)) -> U51(X1,X2) r82: U51(active(X1),X2) -> U51(X1,X2) r83: U51(X1,active(X2)) -> U51(X1,X2) r84: U52(mark(X)) -> U52(X) r85: U52(active(X)) -> U52(X) r86: U61(mark(X)) -> U61(X) r87: U61(active(X)) -> U61(X) r88: U71(mark(X1),X2) -> U71(X1,X2) r89: U71(X1,mark(X2)) -> U71(X1,X2) r90: U71(active(X1),X2) -> U71(X1,X2) r91: U71(X1,active(X2)) -> U71(X1,X2) r92: U72(mark(X)) -> U72(X) r93: U72(active(X)) -> U72(X) r94: isPal(mark(X)) -> isPal(X) r95: isPal(active(X)) -> isPal(X) r96: U81(mark(X)) -> U81(X) r97: U81(active(X)) -> U81(X) r98: isQid(mark(X)) -> isQid(X) r99: isQid(active(X)) -> isQid(X) r100: isNePal(mark(X)) -> isNePal(X) r101: isNePal(active(X)) -> isNePal(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: isNePal# > active > mark argument filter: pi(isNePal#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: isNePal# > active > mark argument filter: pi(isNePal#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22, r23, r24, r25, r26, r27, r28, r29, r30, r31, r32, r33, r34, r35, r36, r37, r38, r39, r40, r41, r42, r43, r44, r45, r46, r47, r48, r49, r50, r51, r52, r53, r54, r55, r56, r57, r58, r59, r60, r61, r62, r63, r64, r65, r66, r67, r68, r69, r70, r71, r72, r73, r74, r75, r76, r77, r78, r79, r80, r81, r82, r83, r84, r85, r86, r87, r88, r89, r90, r91, r92, r93, r94, r95, r96, r97, r98, r99, r100, r101 We remove them from the problem. Then no dependency pair remains.