YES We show the termination of the TRS R: f(X) -> cons(X,n__f(n__g(X))) g(|0|()) -> s(|0|()) g(s(X)) -> s(s(g(X))) sel(|0|(),cons(X,Y)) -> X sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) f(X) -> n__f(X) g(X) -> n__g(X) activate(n__f(X)) -> f(activate(X)) activate(n__g(X)) -> g(activate(X)) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(X)) -> g#(X) p2: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) p3: sel#(s(X),cons(Y,Z)) -> activate#(Z) p4: activate#(n__f(X)) -> f#(activate(X)) p5: activate#(n__f(X)) -> activate#(X) p6: activate#(n__g(X)) -> g#(activate(X)) p7: activate#(n__g(X)) -> activate#(X) and R consists of: r1: f(X) -> cons(X,n__f(n__g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: g(X) -> n__g(X) r8: activate(n__f(X)) -> f(activate(X)) r9: activate(n__g(X)) -> g(activate(X)) r10: activate(X) -> X The estimated dependency graph contains the following SCCs: {p2} {p5, p7} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sel#(s(X),cons(Y,Z)) -> sel#(X,activate(Z)) and R consists of: r1: f(X) -> cons(X,n__f(n__g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: g(X) -> n__g(X) r8: activate(n__f(X)) -> f(activate(X)) r9: activate(n__g(X)) -> g(activate(X)) r10: activate(X) -> X The set of usable rules consists of r1, r2, r3, r6, r7, r8, r9, r10 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > sel# > activate > g > |0| > s > f > n__g > n__f argument filter: pi(sel#) = [1, 2] pi(s) = [1] pi(cons) = 2 pi(activate) = [1] pi(f) = [1] pi(n__f) = [1] pi(n__g) = [1] pi(g) = [1] pi(|0|) = [] 2. lexicographic path order with precedence: precedence: |0| > s > g > activate > n__g > n__f > cons > f > sel# argument filter: pi(sel#) = [] pi(s) = [] pi(cons) = 2 pi(activate) = [1] pi(f) = [] pi(n__f) = [1] pi(n__g) = 1 pi(g) = 1 pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__g(X)) -> activate#(X) p2: activate#(n__f(X)) -> activate#(X) and R consists of: r1: f(X) -> cons(X,n__f(n__g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: g(X) -> n__g(X) r8: activate(n__f(X)) -> f(activate(X)) r9: activate(n__g(X)) -> g(activate(X)) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: activate# > n__f > n__g argument filter: pi(activate#) = 1 pi(n__g) = 1 pi(n__f) = 1 2. lexicographic path order with precedence: precedence: activate# > n__f > n__g argument filter: pi(activate#) = 1 pi(n__g) = [1] pi(n__f) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(s(X)) -> g#(X) and R consists of: r1: f(X) -> cons(X,n__f(n__g(X))) r2: g(|0|()) -> s(|0|()) r3: g(s(X)) -> s(s(g(X))) r4: sel(|0|(),cons(X,Y)) -> X r5: sel(s(X),cons(Y,Z)) -> sel(X,activate(Z)) r6: f(X) -> n__f(X) r7: g(X) -> n__g(X) r8: activate(n__f(X)) -> f(activate(X)) r9: activate(n__g(X)) -> g(activate(X)) r10: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > g# argument filter: pi(g#) = [1] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > g# argument filter: pi(g#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10 We remove them from the problem. Then no dependency pair remains.