YES We show the termination of the TRS R: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) sqr(|0|()) -> |0|() sqr(s(X)) -> s(add(sqr(X),dbl(X))) dbl(|0|()) -> |0|() dbl(s(X)) -> s(s(dbl(X))) add(|0|(),X) -> X add(s(X),Y) -> s(add(X,Y)) first(|0|(),X) -> nil() first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) terms(X) -> n__terms(X) first(X1,X2) -> n__first(X1,X2) activate(n__terms(X)) -> terms(X) activate(n__first(X1,X2)) -> first(X1,X2) activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: terms#(N) -> sqr#(N) p2: sqr#(s(X)) -> add#(sqr(X),dbl(X)) p3: sqr#(s(X)) -> sqr#(X) p4: sqr#(s(X)) -> dbl#(X) p5: dbl#(s(X)) -> dbl#(X) p6: add#(s(X),Y) -> add#(X,Y) p7: first#(s(X),cons(Y,Z)) -> activate#(Z) p8: activate#(n__terms(X)) -> terms#(X) p9: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The estimated dependency graph contains the following SCCs: {p7, p9} {p3} {p6} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: first#(s(X),cons(Y,Z)) -> activate#(Z) p2: activate#(n__first(X1,X2)) -> first#(X1,X2) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: n__first > first# > activate# > cons > s argument filter: pi(first#) = 2 pi(s) = [] pi(cons) = 2 pi(activate#) = 1 pi(n__first) = [2] 2. lexicographic path order with precedence: precedence: first# > n__first > activate# > cons > s argument filter: pi(first#) = 2 pi(s) = [] pi(cons) = [2] pi(activate#) = 1 pi(n__first) = 2 The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: sqr#(s(X)) -> sqr#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > sqr# argument filter: pi(sqr#) = [1] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > sqr# argument filter: pi(sqr#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: add#(s(X),Y) -> add#(X,Y) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > add# argument filter: pi(add#) = 1 pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > add# argument filter: pi(add#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: dbl#(s(X)) -> dbl#(X) and R consists of: r1: terms(N) -> cons(recip(sqr(N)),n__terms(s(N))) r2: sqr(|0|()) -> |0|() r3: sqr(s(X)) -> s(add(sqr(X),dbl(X))) r4: dbl(|0|()) -> |0|() r5: dbl(s(X)) -> s(s(dbl(X))) r6: add(|0|(),X) -> X r7: add(s(X),Y) -> s(add(X,Y)) r8: first(|0|(),X) -> nil() r9: first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z))) r10: terms(X) -> n__terms(X) r11: first(X1,X2) -> n__first(X1,X2) r12: activate(n__terms(X)) -> terms(X) r13: activate(n__first(X1,X2)) -> first(X1,X2) r14: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > dbl# argument filter: pi(dbl#) = [1] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > dbl# argument filter: pi(dbl#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14 We remove them from the problem. Then no dependency pair remains.