YES We show the termination of the TRS R: a__f(f(X)) -> a__c(f(g(f(X)))) a__c(X) -> d(X) a__h(X) -> a__c(d(X)) mark(f(X)) -> a__f(mark(X)) mark(c(X)) -> a__c(X) mark(h(X)) -> a__h(mark(X)) mark(g(X)) -> g(X) mark(d(X)) -> d(X) a__f(X) -> f(X) a__c(X) -> c(X) a__h(X) -> h(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a__f#(f(X)) -> a__c#(f(g(f(X)))) p2: a__h#(X) -> a__c#(d(X)) p3: mark#(f(X)) -> a__f#(mark(X)) p4: mark#(f(X)) -> mark#(X) p5: mark#(c(X)) -> a__c#(X) p6: mark#(h(X)) -> a__h#(mark(X)) p7: mark#(h(X)) -> mark#(X) and R consists of: r1: a__f(f(X)) -> a__c(f(g(f(X)))) r2: a__c(X) -> d(X) r3: a__h(X) -> a__c(d(X)) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(c(X)) -> a__c(X) r6: mark(h(X)) -> a__h(mark(X)) r7: mark(g(X)) -> g(X) r8: mark(d(X)) -> d(X) r9: a__f(X) -> f(X) r10: a__c(X) -> c(X) r11: a__h(X) -> h(X) The estimated dependency graph contains the following SCCs: {p4, p7} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(h(X)) -> mark#(X) p2: mark#(f(X)) -> mark#(X) and R consists of: r1: a__f(f(X)) -> a__c(f(g(f(X)))) r2: a__c(X) -> d(X) r3: a__h(X) -> a__c(d(X)) r4: mark(f(X)) -> a__f(mark(X)) r5: mark(c(X)) -> a__c(X) r6: mark(h(X)) -> a__h(mark(X)) r7: mark(g(X)) -> g(X) r8: mark(d(X)) -> d(X) r9: a__f(X) -> f(X) r10: a__c(X) -> c(X) r11: a__h(X) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: mark# > f > h argument filter: pi(mark#) = 1 pi(h) = 1 pi(f) = 1 2. lexicographic path order with precedence: precedence: mark# > f > h argument filter: pi(mark#) = 1 pi(h) = [1] pi(f) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.