YES We show the termination of the TRS R: a__f(f(a())) -> c(f(g(f(a())))) mark(f(X)) -> a__f(mark(X)) mark(a()) -> a() mark(c(X)) -> c(X) mark(g(X)) -> g(mark(X)) a__f(X) -> f(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> a__f#(mark(X)) p2: mark#(f(X)) -> mark#(X) p3: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> c(f(g(f(a())))) r2: mark(f(X)) -> a__f(mark(X)) r3: mark(a()) -> a() r4: mark(c(X)) -> c(X) r5: mark(g(X)) -> g(mark(X)) r6: a__f(X) -> f(X) The estimated dependency graph contains the following SCCs: {p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: mark#(f(X)) -> mark#(X) p2: mark#(g(X)) -> mark#(X) and R consists of: r1: a__f(f(a())) -> c(f(g(f(a())))) r2: mark(f(X)) -> a__f(mark(X)) r3: mark(a()) -> a() r4: mark(c(X)) -> c(X) r5: mark(g(X)) -> g(mark(X)) r6: a__f(X) -> f(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: mark# > g > f argument filter: pi(mark#) = 1 pi(f) = 1 pi(g) = 1 2. lexicographic path order with precedence: precedence: mark# > g > f argument filter: pi(mark#) = 1 pi(f) = [1] pi(g) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.