YES We show the termination of the TRS R: active(g(X)) -> mark(h(X)) active(c()) -> mark(d()) active(h(d())) -> mark(g(c())) mark(g(X)) -> active(g(X)) mark(h(X)) -> active(h(X)) mark(c()) -> active(c()) mark(d()) -> active(d()) g(mark(X)) -> g(X) g(active(X)) -> g(X) h(mark(X)) -> h(X) h(active(X)) -> h(X) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> mark#(h(X)) p2: active#(g(X)) -> h#(X) p3: active#(c()) -> mark#(d()) p4: active#(h(d())) -> mark#(g(c())) p5: active#(h(d())) -> g#(c()) p6: mark#(g(X)) -> active#(g(X)) p7: mark#(h(X)) -> active#(h(X)) p8: mark#(c()) -> active#(c()) p9: mark#(d()) -> active#(d()) p10: g#(mark(X)) -> g#(X) p11: g#(active(X)) -> g#(X) p12: h#(mark(X)) -> h#(X) p13: h#(active(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The estimated dependency graph contains the following SCCs: {p1, p4, p6, p7} {p12, p13} {p10, p11} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: active#(g(X)) -> mark#(h(X)) p2: mark#(h(X)) -> active#(h(X)) p3: active#(h(d())) -> mark#(g(c())) p4: mark#(g(X)) -> active#(g(X)) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of r8, r9, r10, r11 Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: h > active > mark > d > g > c > active# > mark# argument filter: pi(active#) = 1 pi(g) = [1] pi(mark#) = [1] pi(h) = 1 pi(d) = [] pi(c) = [] pi(mark) = [1] pi(active) = [1] 2. lexicographic path order with precedence: precedence: h > g > active > mark > c > mark# > d > active# argument filter: pi(active#) = [1] pi(g) = 1 pi(mark#) = 1 pi(h) = [1] pi(d) = [] pi(c) = [] pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2, p3, p4 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(mark(X)) -> h#(X) p2: h#(active(X)) -> h#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: h# > active > mark argument filter: pi(h#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: h# > active > mark argument filter: pi(h#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(mark(X)) -> g#(X) p2: g#(active(X)) -> g#(X) and R consists of: r1: active(g(X)) -> mark(h(X)) r2: active(c()) -> mark(d()) r3: active(h(d())) -> mark(g(c())) r4: mark(g(X)) -> active(g(X)) r5: mark(h(X)) -> active(h(X)) r6: mark(c()) -> active(c()) r7: mark(d()) -> active(d()) r8: g(mark(X)) -> g(X) r9: g(active(X)) -> g(X) r10: h(mark(X)) -> h(X) r11: h(active(X)) -> h(X) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g# > active > mark argument filter: pi(g#) = 1 pi(mark) = 1 pi(active) = 1 2. lexicographic path order with precedence: precedence: g# > active > mark argument filter: pi(g#) = 1 pi(mark) = [1] pi(active) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11 We remove them from the problem. Then no dependency pair remains.