YES We show the termination of the TRS R: f(f(a())) -> f(g(n__f(n__a()))) f(X) -> n__f(X) a() -> n__a() activate(n__f(X)) -> f(activate(X)) activate(n__a()) -> a() activate(X) -> X -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(f(a())) -> f#(g(n__f(n__a()))) p2: activate#(n__f(X)) -> f#(activate(X)) p3: activate#(n__f(X)) -> activate#(X) p4: activate#(n__a()) -> a#() and R consists of: r1: f(f(a())) -> f(g(n__f(n__a()))) r2: f(X) -> n__f(X) r3: a() -> n__a() r4: activate(n__f(X)) -> f(activate(X)) r5: activate(n__a()) -> a() r6: activate(X) -> X The estimated dependency graph contains the following SCCs: {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: activate#(n__f(X)) -> activate#(X) and R consists of: r1: f(f(a())) -> f(g(n__f(n__a()))) r2: f(X) -> n__f(X) r3: a() -> n__a() r4: activate(n__f(X)) -> f(activate(X)) r5: activate(n__a()) -> a() r6: activate(X) -> X The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: n__f > activate# argument filter: pi(activate#) = [1] pi(n__f) = 1 2. lexicographic path order with precedence: precedence: n__f > activate# argument filter: pi(activate#) = [1] pi(n__f) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.