YES We show the termination of the TRS R: f(s(X)) -> f(X) g(cons(|0|(),Y)) -> g(Y) g(cons(s(X),Y)) -> s(X) h(cons(X,Y)) -> h(g(cons(X,Y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) p2: g#(cons(|0|(),Y)) -> g#(Y) p3: h#(cons(X,Y)) -> h#(g(cons(X,Y))) p4: h#(cons(X,Y)) -> g#(cons(X,Y)) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The estimated dependency graph contains the following SCCs: {p1} {p3} {p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(s(X)) -> f#(X) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = [1] pi(s) = 1 2. lexicographic path order with precedence: precedence: s > f# argument filter: pi(f#) = [1] pi(s) = [1] The next rules are strictly ordered: p1 r1, r2, r3, r4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: h#(cons(X,Y)) -> h#(g(cons(X,Y))) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of r2, r3 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > g > |0| > h# > cons argument filter: pi(h#) = 1 pi(cons) = [1, 2] pi(g) = 1 pi(|0|) = [] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > |0| > cons > g > h# argument filter: pi(h#) = [1] pi(cons) = [1] pi(g) = [] pi(|0|) = [] pi(s) = 1 The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: g#(cons(|0|(),Y)) -> g#(Y) and R consists of: r1: f(s(X)) -> f(X) r2: g(cons(|0|(),Y)) -> g(Y) r3: g(cons(s(X),Y)) -> s(X) r4: h(cons(X,Y)) -> h(g(cons(X,Y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g# > |0| > cons argument filter: pi(g#) = 1 pi(cons) = [1, 2] pi(|0|) = [] 2. lexicographic path order with precedence: precedence: g# > |0| > cons argument filter: pi(g#) = 1 pi(cons) = [1, 2] pi(|0|) = [] The next rules are strictly ordered: p1 r1, r2, r3, r4 We remove them from the problem. Then no dependency pair remains.