YES We show the termination of the TRS R: int(|0|(),|0|()) -> .(|0|(),nil()) int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) int(s(x),|0|()) -> nil() int(s(x),s(y)) -> int_list(int(x,y)) int_list(nil()) -> nil() int_list(.(x,y)) -> .(s(x),int_list(y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int_list#(int(x,y)) p3: int#(s(x),s(y)) -> int#(x,y) p4: int_list#(.(x,y)) -> int_list#(y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The estimated dependency graph contains the following SCCs: {p1, p3} {p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int#(x,y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > int# > s argument filter: pi(int#) = [1, 2] pi(|0|) = [] pi(s) = 1 2. lexicographic path order with precedence: precedence: |0| > s > int# argument filter: pi(int#) = [2] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int_list#(.(x,y)) -> int_list#(y) and R consists of: r1: int(|0|(),|0|()) -> .(|0|(),nil()) r2: int(|0|(),s(y)) -> .(|0|(),int(s(|0|()),s(y))) r3: int(s(x),|0|()) -> nil() r4: int(s(x),s(y)) -> int_list(int(x,y)) r5: int_list(nil()) -> nil() r6: int_list(.(x,y)) -> .(s(x),int_list(y)) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: . > int_list# argument filter: pi(int_list#) = [1] pi(.) = [1, 2] 2. lexicographic path order with precedence: precedence: . > int_list# argument filter: pi(int_list#) = [1] pi(.) = [1, 2] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6 We remove them from the problem. Then no dependency pair remains.