YES We show the termination of the TRS R: and(x,or(y,z)) -> or(and(x,y),and(x,z)) and(x,and(y,y)) -> and(x,y) or(or(x,y),and(y,z)) -> or(x,y) or(x,and(x,y)) -> x or(true(),y) -> true() or(x,false()) -> x or(x,x) -> x or(x,or(y,y)) -> or(x,y) and(x,true()) -> x and(false(),y) -> false() and(x,x) -> x -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: and#(x,or(y,z)) -> or#(and(x,y),and(x,z)) p2: and#(x,or(y,z)) -> and#(x,y) p3: and#(x,or(y,z)) -> and#(x,z) p4: and#(x,and(y,y)) -> and#(x,y) p5: or#(x,or(y,y)) -> or#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The estimated dependency graph contains the following SCCs: {p2, p3, p4} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: and#(x,and(y,y)) -> and#(x,y) p2: and#(x,or(y,z)) -> and#(x,z) p3: and#(x,or(y,z)) -> and#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: and# > or > and argument filter: pi(and#) = [1, 2] pi(and) = [1, 2] pi(or) = [1, 2] 2. lexicographic path order with precedence: precedence: and# > or > and argument filter: pi(and#) = 2 pi(and) = [1, 2] pi(or) = [1, 2] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: or#(x,or(y,y)) -> or#(x,y) and R consists of: r1: and(x,or(y,z)) -> or(and(x,y),and(x,z)) r2: and(x,and(y,y)) -> and(x,y) r3: or(or(x,y),and(y,z)) -> or(x,y) r4: or(x,and(x,y)) -> x r5: or(true(),y) -> true() r6: or(x,false()) -> x r7: or(x,x) -> x r8: or(x,or(y,y)) -> or(x,y) r9: and(x,true()) -> x r10: and(false(),y) -> false() r11: and(x,x) -> x The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: or > or# argument filter: pi(or#) = [1, 2] pi(or) = [1, 2] 2. lexicographic path order with precedence: precedence: or > or# argument filter: pi(or#) = [2] pi(or) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.