YES We show the termination of the TRS R: f(x,y) -> g(x,y) g(h(x),y) -> h(f(x,y)) g(h(x),y) -> h(g(x,y)) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) p2: g#(h(x),y) -> f#(x,y) p3: g#(h(x),y) -> g#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The estimated dependency graph contains the following SCCs: {p1, p2, p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) p2: g#(h(x),y) -> g#(x,y) p3: g#(h(x),y) -> f#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: g# > f# > h argument filter: pi(f#) = 1 pi(g#) = 1 pi(h) = [1] 2. lexicographic path order with precedence: precedence: g# > f# > h argument filter: pi(f#) = 1 pi(g#) = 1 pi(h) = [] The next rules are strictly ordered: p2, p3 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: f#(x,y) -> g#(x,y) and R consists of: r1: f(x,y) -> g(x,y) r2: g(h(x),y) -> h(f(x,y)) r3: g(h(x),y) -> h(g(x,y)) The estimated dependency graph contains the following SCCs: (no SCCs)