YES We show the termination of the TRS R: and(false(),false()) -> false() and(true(),false()) -> false() and(false(),true()) -> false() and(true(),true()) -> true() eq(nil(),nil()) -> true() eq(cons(T,L),nil()) -> false() eq(nil(),cons(T,L)) -> false() eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) eq(var(L),var(Lp)) -> eq(L,Lp) eq(var(L),apply(T,S)) -> false() eq(var(L),lambda(X,T)) -> false() eq(apply(T,S),var(L)) -> false() eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) eq(apply(T,S),lambda(X,Tp)) -> false() eq(lambda(X,T),var(L)) -> false() eq(lambda(X,T),apply(Tp,Sp)) -> false() eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) if(true(),var(K),var(L)) -> var(K) if(false(),var(K),var(L)) -> var(L) ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> and#(eq(T,Tp),eq(L,Lp)) p2: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p3: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) p4: eq#(var(L),var(Lp)) -> eq#(L,Lp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> and#(eq(T,Tp),eq(S,Sp)) p6: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p7: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p8: eq#(lambda(X,T),lambda(Xp,Tp)) -> and#(eq(T,Tp),eq(X,Xp)) p9: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p10: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p11: ren#(var(L),var(K),var(Lp)) -> if#(eq(L,Lp),var(K),var(Lp)) p12: ren#(var(L),var(K),var(Lp)) -> eq#(L,Lp) p13: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) p14: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p15: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p16: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The estimated dependency graph contains the following SCCs: {p13, p14, p15, p16} {p2, p3, p4, p6, p7, p9, p10} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: ren#(X,Y,lambda(Z,T)) -> ren#(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T) p2: ren#(X,Y,lambda(Z,T)) -> ren#(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T)) p3: ren#(X,Y,apply(T,S)) -> ren#(X,Y,S) p4: ren#(X,Y,apply(T,S)) -> ren#(X,Y,T) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, r16, r17, r18, r19, r20, r21, r22 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > var > if > ren > lambda > nil > apply > and > eq > true > ren# > false argument filter: pi(ren#) = 3 pi(lambda) = [2] pi(var) = [] pi(cons) = [1, 2] pi(nil) = [] pi(ren) = 3 pi(apply) = [1, 2] pi(and) = 2 pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = 3 2. lexicographic path order with precedence: precedence: if > false > true > and > eq > nil > var > ren# > apply > cons > ren > lambda argument filter: pi(ren#) = [] pi(lambda) = 2 pi(var) = [] pi(cons) = [1, 2] pi(nil) = [] pi(ren) = 3 pi(apply) = [2] pi(and) = 2 pi(false) = [] pi(true) = [] pi(eq) = [] pi(if) = 3 The next rules are strictly ordered: p1, p2, p3, p4 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(T,Tp) p2: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(X,Xp) p3: eq#(lambda(X,T),lambda(Xp,Tp)) -> eq#(T,Tp) p4: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(S,Sp) p5: eq#(apply(T,S),apply(Tp,Sp)) -> eq#(T,Tp) p6: eq#(var(L),var(Lp)) -> eq#(L,Lp) p7: eq#(cons(T,L),cons(Tp,Lp)) -> eq#(L,Lp) and R consists of: r1: and(false(),false()) -> false() r2: and(true(),false()) -> false() r3: and(false(),true()) -> false() r4: and(true(),true()) -> true() r5: eq(nil(),nil()) -> true() r6: eq(cons(T,L),nil()) -> false() r7: eq(nil(),cons(T,L)) -> false() r8: eq(cons(T,L),cons(Tp,Lp)) -> and(eq(T,Tp),eq(L,Lp)) r9: eq(var(L),var(Lp)) -> eq(L,Lp) r10: eq(var(L),apply(T,S)) -> false() r11: eq(var(L),lambda(X,T)) -> false() r12: eq(apply(T,S),var(L)) -> false() r13: eq(apply(T,S),apply(Tp,Sp)) -> and(eq(T,Tp),eq(S,Sp)) r14: eq(apply(T,S),lambda(X,Tp)) -> false() r15: eq(lambda(X,T),var(L)) -> false() r16: eq(lambda(X,T),apply(Tp,Sp)) -> false() r17: eq(lambda(X,T),lambda(Xp,Tp)) -> and(eq(T,Tp),eq(X,Xp)) r18: if(true(),var(K),var(L)) -> var(K) r19: if(false(),var(K),var(L)) -> var(L) r20: ren(var(L),var(K),var(Lp)) -> if(eq(L,Lp),var(K),var(Lp)) r21: ren(X,Y,apply(T,S)) -> apply(ren(X,Y,T),ren(X,Y,S)) r22: ren(X,Y,lambda(Z,T)) -> lambda(var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),ren(X,Y,ren(Z,var(cons(X,cons(Y,cons(lambda(Z,T),nil())))),T))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: var > cons > eq# > apply > lambda argument filter: pi(eq#) = [1] pi(cons) = [1, 2] pi(lambda) = [1, 2] pi(apply) = [1, 2] pi(var) = 1 2. lexicographic path order with precedence: precedence: eq# > var > apply > lambda > cons argument filter: pi(eq#) = [1] pi(cons) = [2] pi(lambda) = 2 pi(apply) = 2 pi(var) = [1] The next rules are strictly ordered: p1, p2, p3, p4, p5, p6, p7 We remove them from the problem. Then no dependency pair remains.