YES We show the termination of the TRS R: D(t()) -> |1|() D(constant()) -> |0|() D(+(x,y)) -> +(D(x),D(y)) D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) D(-(x,y)) -> -(D(x),D(y)) D(minus(x)) -> minus(D(x)) D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) D(ln(x)) -> div(D(x),x) D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(+(x,y)) -> D#(y) p3: D#(*(x,y)) -> D#(x) p4: D#(*(x,y)) -> D#(y) p5: D#(-(x,y)) -> D#(x) p6: D#(-(x,y)) -> D#(y) p7: D#(minus(x)) -> D#(x) p8: D#(div(x,y)) -> D#(x) p9: D#(div(x,y)) -> D#(y) p10: D#(ln(x)) -> D#(x) p11: D#(pow(x,y)) -> D#(x) p12: D#(pow(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(+(x,y)) -> D#(x) p2: D#(pow(x,y)) -> D#(y) p3: D#(pow(x,y)) -> D#(x) p4: D#(ln(x)) -> D#(x) p5: D#(div(x,y)) -> D#(y) p6: D#(div(x,y)) -> D#(x) p7: D#(minus(x)) -> D#(x) p8: D#(-(x,y)) -> D#(y) p9: D#(-(x,y)) -> D#(x) p10: D#(*(x,y)) -> D#(y) p11: D#(*(x,y)) -> D#(x) p12: D#(+(x,y)) -> D#(y) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: div > ln > - > pow > * > + > minus > D# argument filter: pi(D#) = [1] pi(+) = [1, 2] pi(pow) = [1, 2] pi(ln) = 1 pi(div) = [1, 2] pi(minus) = 1 pi(-) = [1, 2] pi(*) = [1, 2] 2. lexicographic path order with precedence: precedence: div > - > + > ln > * > D# > pow > minus argument filter: pi(D#) = [] pi(+) = [] pi(pow) = [] pi(ln) = [] pi(div) = [] pi(minus) = [] pi(-) = [] pi(*) = [] The next rules are strictly ordered: p1, p2, p3, p5, p6, p8, p9, p10, p11, p12 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) p2: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The estimated dependency graph contains the following SCCs: {p1, p2} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: D#(ln(x)) -> D#(x) p2: D#(minus(x)) -> D#(x) and R consists of: r1: D(t()) -> |1|() r2: D(constant()) -> |0|() r3: D(+(x,y)) -> +(D(x),D(y)) r4: D(*(x,y)) -> +(*(y,D(x)),*(x,D(y))) r5: D(-(x,y)) -> -(D(x),D(y)) r6: D(minus(x)) -> minus(D(x)) r7: D(div(x,y)) -> -(div(D(x),y),div(*(x,D(y)),pow(y,|2|()))) r8: D(ln(x)) -> div(D(x),x) r9: D(pow(x,y)) -> +(*(*(y,pow(x,-(y,|1|()))),D(x)),*(*(pow(x,y),ln(x)),D(y))) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: D# > minus > ln argument filter: pi(D#) = 1 pi(ln) = 1 pi(minus) = 1 2. lexicographic path order with precedence: precedence: D# > minus > ln argument filter: pi(D#) = 1 pi(ln) = [1] pi(minus) = [1] The next rules are strictly ordered: p1, p2 r1, r2, r3, r4, r5, r6, r7, r8, r9 We remove them from the problem. Then no dependency pair remains.