YES

We show the termination of the TRS R:

  app(app(mapt(),f),app(leaf(),x)) -> app(leaf(),app(f,x))
  app(app(mapt(),f),app(node(),xs)) -> app(node(),app(app(maptlist(),f),xs))
  app(app(maptlist(),f),nil()) -> nil()
  app(app(maptlist(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(mapt(),f),app(leaf(),x)) -> app#(leaf(),app(f,x))
p2: app#(app(mapt(),f),app(leaf(),x)) -> app#(f,x)
p3: app#(app(mapt(),f),app(node(),xs)) -> app#(node(),app(app(maptlist(),f),xs))
p4: app#(app(mapt(),f),app(node(),xs)) -> app#(app(maptlist(),f),xs)
p5: app#(app(mapt(),f),app(node(),xs)) -> app#(maptlist(),f)
p6: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))
p7: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(cons(),app(app(mapt(),f),x))
p8: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(mapt(),f),x)
p9: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(mapt(),f)
p10: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(maptlist(),f),xs)

and R consists of:

r1: app(app(mapt(),f),app(leaf(),x)) -> app(leaf(),app(f,x))
r2: app(app(mapt(),f),app(node(),xs)) -> app(node(),app(app(maptlist(),f),xs))
r3: app(app(maptlist(),f),nil()) -> nil()
r4: app(app(maptlist(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))

The estimated dependency graph contains the following SCCs:

  {p2, p4, p8, p10}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(mapt(),f),app(leaf(),x)) -> app#(f,x)
p2: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(maptlist(),f),xs)
p3: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(mapt(),f),x)
p4: app#(app(mapt(),f),app(node(),xs)) -> app#(app(maptlist(),f),xs)

and R consists of:

r1: app(app(mapt(),f),app(leaf(),x)) -> app(leaf(),app(f,x))
r2: app(app(mapt(),f),app(node(),xs)) -> app(node(),app(app(maptlist(),f),xs))
r3: app(app(maptlist(),f),nil()) -> nil()
r4: app(app(maptlist(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        maptlist > app > app# > node > mapt > cons > leaf
      
      argument filter:
    
        pi(app#) = 1
        pi(app) = 2
        pi(mapt) = []
        pi(leaf) = []
        pi(maptlist) = []
        pi(cons) = []
        pi(node) = []
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        app > maptlist > app# > node > mapt > cons > leaf
      
      argument filter:
    
        pi(app#) = 1
        pi(app) = [2]
        pi(mapt) = []
        pi(leaf) = []
        pi(maptlist) = []
        pi(cons) = []
        pi(node) = []
    

The next rules are strictly ordered:

  p1

We remove them from the problem.

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(maptlist(),f),xs)
p2: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(mapt(),f),x)
p3: app#(app(mapt(),f),app(node(),xs)) -> app#(app(maptlist(),f),xs)

and R consists of:

r1: app(app(mapt(),f),app(leaf(),x)) -> app(leaf(),app(f,x))
r2: app(app(mapt(),f),app(node(),xs)) -> app(node(),app(app(maptlist(),f),xs))
r3: app(app(maptlist(),f),nil()) -> nil()
r4: app(app(maptlist(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(maptlist(),f),xs)
p2: app#(app(maptlist(),f),app(app(cons(),x),xs)) -> app#(app(mapt(),f),x)
p3: app#(app(mapt(),f),app(node(),xs)) -> app#(app(maptlist(),f),xs)

and R consists of:

r1: app(app(mapt(),f),app(leaf(),x)) -> app(leaf(),app(f,x))
r2: app(app(mapt(),f),app(node(),xs)) -> app(node(),app(app(maptlist(),f),xs))
r3: app(app(maptlist(),f),nil()) -> nil()
r4: app(app(maptlist(),f),app(app(cons(),x),xs)) -> app(app(cons(),app(app(mapt(),f),x)),app(app(maptlist(),f),xs))

The set of usable rules consists of

  (no rules)

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        node > cons > mapt > maptlist > app > app#
      
      argument filter:
    
        pi(app#) = 2
        pi(app) = [1, 2]
        pi(maptlist) = []
        pi(cons) = []
        pi(mapt) = []
        pi(node) = []
    
    2. lexicographic path order with precedence:
    
      precedence:
      
        app > maptlist > app# > node > mapt > cons
      
      argument filter:
    
        pi(app#) = []
        pi(app) = []
        pi(maptlist) = []
        pi(cons) = []
        pi(mapt) = []
        pi(node) = []
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.