YES We show the termination of the TRS R: intlist(nil()) -> nil() int(s(x),|0|()) -> nil() int(x,x) -> cons(x,nil()) intlist(cons(x,y)) -> cons(s(x),intlist(y)) int(s(x),s(y)) -> intlist(int(x,y)) int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) intlist(cons(x,nil())) -> cons(s(x),nil()) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: intlist#(cons(x,y)) -> intlist#(y) p2: int#(s(x),s(y)) -> intlist#(int(x,y)) p3: int#(s(x),s(y)) -> int#(x,y) p4: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The estimated dependency graph contains the following SCCs: {p3, p4} {p1} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) p2: int#(s(x),s(y)) -> int#(x,y) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > int# > s argument filter: pi(int#) = [1, 2] pi(|0|) = [] pi(s) = 1 2. lexicographic path order with precedence: precedence: |0| > s > int# argument filter: pi(int#) = [2] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p2 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: int#(|0|(),s(y)) -> int#(s(|0|()),s(y)) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: intlist#(cons(x,y)) -> intlist#(y) and R consists of: r1: intlist(nil()) -> nil() r2: int(s(x),|0|()) -> nil() r3: int(x,x) -> cons(x,nil()) r4: intlist(cons(x,y)) -> cons(s(x),intlist(y)) r5: int(s(x),s(y)) -> intlist(int(x,y)) r6: int(|0|(),s(y)) -> cons(|0|(),int(s(|0|()),s(y))) r7: intlist(cons(x,nil())) -> cons(s(x),nil()) The set of usable rules consists of (no rules) Take the monotone reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: cons > intlist# argument filter: pi(intlist#) = [1] pi(cons) = [1, 2] 2. lexicographic path order with precedence: precedence: cons > intlist# argument filter: pi(intlist#) = [1] pi(cons) = [1, 2] The next rules are strictly ordered: p1 r1, r2, r3, r4, r5, r6, r7 We remove them from the problem. Then no dependency pair remains.