YES We show the termination of the TRS R: le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) pred(s(x)) -> x minus(x,|0|()) -> x minus(x,s(y)) -> pred(minus(x,y)) mod(|0|(),y) -> |0|() mod(s(x),|0|()) -> |0|() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) if_mod(false(),s(x),s(y)) -> s(x) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) p2: minus#(x,s(y)) -> pred#(minus(x,y)) p3: minus#(x,s(y)) -> minus#(x,y) p4: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) p5: mod#(s(x),s(y)) -> le#(y,x) p6: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p7: if_mod#(true(),s(x),s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) The estimated dependency graph contains the following SCCs: {p4, p6} {p1} {p3} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_mod#(true(),s(x),s(y)) -> mod#(minus(x,y),s(y)) p2: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of r1, r2, r3, r4, r5, r6 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > |0| > pred > le > false > minus > mod# > true > if_mod# argument filter: pi(if_mod#) = 2 pi(true) = [] pi(s) = 1 pi(mod#) = 1 pi(minus) = 1 pi(le) = [1] pi(pred) = 1 pi(|0|) = [] pi(false) = [] 2. lexicographic path order with precedence: precedence: false > true > |0| > pred > le > s > minus > if_mod# > mod# argument filter: pi(if_mod#) = 2 pi(true) = [] pi(s) = [1] pi(mod#) = 1 pi(minus) = [1] pi(le) = [1] pi(pred) = 1 pi(|0|) = [] pi(false) = [] The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: mod#(s(x),s(y)) -> if_mod#(le(y,x),s(x),s(y)) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) The estimated dependency graph contains the following SCCs: (no SCCs) -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > le# argument filter: pi(le#) = [2] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > le# argument filter: pi(le#) = [2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(x,s(y)) -> minus#(x,y) and R consists of: r1: le(|0|(),y) -> true() r2: le(s(x),|0|()) -> false() r3: le(s(x),s(y)) -> le(x,y) r4: pred(s(x)) -> x r5: minus(x,|0|()) -> x r6: minus(x,s(y)) -> pred(minus(x,y)) r7: mod(|0|(),y) -> |0|() r8: mod(s(x),|0|()) -> |0|() r9: mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) r10: if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) r11: if_mod(false(),s(x),s(y)) -> s(x) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: minus# > s argument filter: pi(minus#) = 2 pi(s) = 1 2. lexicographic path order with precedence: precedence: s > minus# argument filter: pi(minus#) = 2 pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.