YES We show the termination of the TRS R: minus(x,|0|()) -> x minus(s(x),s(y)) -> minus(x,y) quot(|0|(),s(y)) -> |0|() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) le(|0|(),y) -> true() le(s(x),|0|()) -> false() le(s(x),s(y)) -> le(x,y) app(nil(),y) -> y app(add(n,x),y) -> add(n,app(x,y)) low(n,nil()) -> nil() low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) if_low(true(),n,add(m,x)) -> add(m,low(n,x)) if_low(false(),n,add(m,x)) -> low(n,x) high(n,nil()) -> nil() high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) if_high(true(),n,add(m,x)) -> high(n,x) if_high(false(),n,add(m,x)) -> add(m,high(n,x)) quicksort(nil()) -> nil() quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) p2: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) p3: quot#(s(x),s(y)) -> minus#(x,y) p4: le#(s(x),s(y)) -> le#(x,y) p5: app#(add(n,x),y) -> app#(x,y) p6: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p7: low#(n,add(m,x)) -> le#(m,n) p8: if_low#(true(),n,add(m,x)) -> low#(n,x) p9: if_low#(false(),n,add(m,x)) -> low#(n,x) p10: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p11: high#(n,add(m,x)) -> le#(m,n) p12: if_high#(true(),n,add(m,x)) -> high#(n,x) p13: if_high#(false(),n,add(m,x)) -> high#(n,x) p14: quicksort#(add(n,x)) -> app#(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) p15: quicksort#(add(n,x)) -> quicksort#(low(n,x)) p16: quicksort#(add(n,x)) -> low#(n,x) p17: quicksort#(add(n,x)) -> quicksort#(high(n,x)) p18: quicksort#(add(n,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The estimated dependency graph contains the following SCCs: {p2} {p1} {p15, p17} {p10, p12, p13} {p6, p8, p9} {p4} {p5} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quot#(s(x),s(y)) -> quot#(minus(x,y),s(y)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r1, r2 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: |0| > s > minus > quot# argument filter: pi(quot#) = [1, 2] pi(s) = [1] pi(minus) = [1] pi(|0|) = [] 2. lexicographic path order with precedence: precedence: |0| > minus > s > quot# argument filter: pi(quot#) = 2 pi(s) = 1 pi(minus) = [1] pi(|0|) = [] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: minus#(s(x),s(y)) -> minus#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > minus# argument filter: pi(minus#) = [2] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > minus# argument filter: pi(minus#) = [2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: quicksort#(add(n,x)) -> quicksort#(high(n,x)) p2: quicksort#(add(n,x)) -> quicksort#(low(n,x)) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7, r10, r11, r12, r13, r14, r15, r16, r17 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: nil > if_high > if_low > le > low > high > add > false > s > true > |0| > quicksort# argument filter: pi(quicksort#) = [1] pi(add) = 2 pi(high) = 2 pi(low) = 2 pi(le) = [1] pi(|0|) = [] pi(true) = [] pi(s) = [1] pi(false) = [] pi(if_low) = 3 pi(if_high) = 3 pi(nil) = [] 2. lexicographic path order with precedence: precedence: quicksort# > nil > if_high > if_low > add > low > high > false > le > s > true > |0| argument filter: pi(quicksort#) = 1 pi(add) = [2] pi(high) = 2 pi(low) = 2 pi(le) = 1 pi(|0|) = [] pi(true) = [] pi(s) = [1] pi(false) = [] pi(if_low) = 3 pi(if_high) = 3 pi(nil) = [] The next rules are strictly ordered: p1, p2 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_high#(false(),n,add(m,x)) -> high#(n,x) p2: high#(n,add(m,x)) -> if_high#(le(m,n),n,add(m,x)) p3: if_high#(true(),n,add(m,x)) -> high#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: le > s > false > |0| > true > add > high# > if_high# argument filter: pi(if_high#) = [1, 3] pi(false) = [] pi(add) = [1, 2] pi(high#) = [2] pi(le) = 1 pi(true) = [] pi(|0|) = [] pi(s) = [1] 2. lexicographic path order with precedence: precedence: false > le > s > true > |0| > high# > if_high# > add argument filter: pi(if_high#) = 1 pi(false) = [] pi(add) = 1 pi(high#) = [2] pi(le) = 1 pi(true) = [] pi(|0|) = [] pi(s) = [1] The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: if_low#(false(),n,add(m,x)) -> low#(n,x) p2: low#(n,add(m,x)) -> if_low#(le(m,n),n,add(m,x)) p3: if_low#(true(),n,add(m,x)) -> low#(n,x) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of r5, r6, r7 Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: le > false > s > true > |0| > low# > if_low# > add argument filter: pi(if_low#) = 3 pi(false) = [] pi(add) = [1, 2] pi(low#) = 2 pi(le) = [1, 2] pi(true) = [] pi(|0|) = [] pi(s) = [1] 2. lexicographic path order with precedence: precedence: false > le > s > true > |0| > low# > if_low# > add argument filter: pi(if_low#) = [] pi(false) = [] pi(add) = 1 pi(low#) = [2] pi(le) = 1 pi(true) = [] pi(|0|) = [] pi(s) = 1 The next rules are strictly ordered: p1, p2, p3 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: le#(s(x),s(y)) -> le#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: s > le# argument filter: pi(le#) = [2] pi(s) = [1] 2. lexicographic path order with precedence: precedence: s > le# argument filter: pi(le#) = [2] pi(s) = [1] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains. -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: app#(add(n,x),y) -> app#(x,y) and R consists of: r1: minus(x,|0|()) -> x r2: minus(s(x),s(y)) -> minus(x,y) r3: quot(|0|(),s(y)) -> |0|() r4: quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) r5: le(|0|(),y) -> true() r6: le(s(x),|0|()) -> false() r7: le(s(x),s(y)) -> le(x,y) r8: app(nil(),y) -> y r9: app(add(n,x),y) -> add(n,app(x,y)) r10: low(n,nil()) -> nil() r11: low(n,add(m,x)) -> if_low(le(m,n),n,add(m,x)) r12: if_low(true(),n,add(m,x)) -> add(m,low(n,x)) r13: if_low(false(),n,add(m,x)) -> low(n,x) r14: high(n,nil()) -> nil() r15: high(n,add(m,x)) -> if_high(le(m,n),n,add(m,x)) r16: if_high(true(),n,add(m,x)) -> high(n,x) r17: if_high(false(),n,add(m,x)) -> add(m,high(n,x)) r18: quicksort(nil()) -> nil() r19: quicksort(add(n,x)) -> app(quicksort(low(n,x)),add(n,quicksort(high(n,x)))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: add > app# argument filter: pi(app#) = [1] pi(add) = [1, 2] 2. lexicographic path order with precedence: precedence: add > app# argument filter: pi(app#) = [1] pi(add) = [1, 2] The next rules are strictly ordered: p1 We remove them from the problem. Then no dependency pair remains.