YES

We show the termination of the TRS R:

  f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x)))
  f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x)))

-- SCC decomposition.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x)))
p2: f#(a(),f(b(),x)) -> f#(a(),f(a(),x))
p3: f#(a(),f(b(),x)) -> f#(a(),x)
p4: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x)))
p5: f#(b(),f(a(),x)) -> f#(b(),f(b(),x))
p6: f#(b(),f(a(),x)) -> f#(b(),x)

and R consists of:

r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x)))
r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x)))

The estimated dependency graph contains the following SCCs:

  {p1, p2, p3}
  {p4, p5, p6}


-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(a(),f(b(),x)) -> f#(a(),f(a(),f(a(),x)))
p2: f#(a(),f(b(),x)) -> f#(a(),x)
p3: f#(a(),f(b(),x)) -> f#(a(),f(a(),x))

and R consists of:

r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x)))
r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x)))

The set of usable rules consists of

  r1

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        f > f# > b > a
      
      argument filter:
    
        pi(f#) = [1, 2]
        pi(a) = []
        pi(f) = [1, 2]
        pi(b) = []
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        f#_A(x1,x2) = x1
        a_A() = 1
        f_A(x1,x2) = x1 + 1
        b_A() = 2
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.

-- Reduction pair.

Consider the dependency pair problem (P, R), where P consists of

p1: f#(b(),f(a(),x)) -> f#(b(),f(b(),f(b(),x)))
p2: f#(b(),f(a(),x)) -> f#(b(),x)
p3: f#(b(),f(a(),x)) -> f#(b(),f(b(),x))

and R consists of:

r1: f(a(),f(b(),x)) -> f(a(),f(a(),f(a(),x)))
r2: f(b(),f(a(),x)) -> f(b(),f(b(),f(b(),x)))

The set of usable rules consists of

  r2

Take the reduction pair:

  lexicographic combination of reduction pairs:
  
    1. lexicographic path order with precedence:
    
      precedence:
      
        f > f# > a > b
      
      argument filter:
    
        pi(f#) = [1, 2]
        pi(b) = []
        pi(f) = [1, 2]
        pi(a) = []
    
    2. matrix interpretations:
    
      carrier: N^1
      order: standard order
      interpretations:
        f#_A(x1,x2) = x1
        b_A() = 1
        f_A(x1,x2) = x1 + 1
        a_A() = 2
    

The next rules are strictly ordered:

  p1, p2, p3

We remove them from the problem.  Then no dependency pair remains.