YES We show the termination of the TRS R: a(f(),a(f(),x)) -> a(x,x) a(h(),x) -> a(f(),a(g(),a(f(),x))) -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),a(g(),a(f(),x))) p3: a#(h(),x) -> a#(g(),a(f(),x)) p4: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: {p1, p4} -- Reduction pair. Consider the dependency pair problem (P, R), where P consists of p1: a#(f(),a(f(),x)) -> a#(x,x) p2: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The set of usable rules consists of (no rules) Take the reduction pair: lexicographic combination of reduction pairs: 1. lexicographic path order with precedence: precedence: h > a > f > a# argument filter: pi(a#) = 2 pi(f) = [] pi(a) = [1, 2] pi(h) = [] 2. matrix interpretations: carrier: N^1 order: standard order interpretations: a#_A(x1,x2) = x2 f_A() = 1 a_A(x1,x2) = 0 h_A() = 0 The next rules are strictly ordered: p1 We remove them from the problem. -- SCC decomposition. Consider the dependency pair problem (P, R), where P consists of p1: a#(h(),x) -> a#(f(),x) and R consists of: r1: a(f(),a(f(),x)) -> a(x,x) r2: a(h(),x) -> a(f(),a(g(),a(f(),x))) The estimated dependency graph contains the following SCCs: (no SCCs)